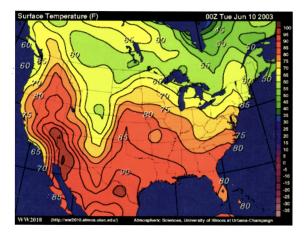
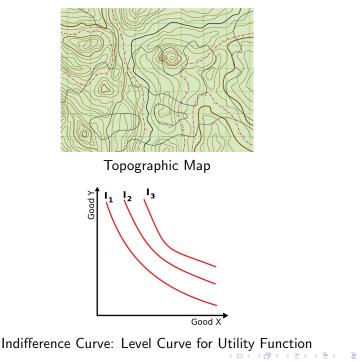
MATH 223: Multivariable Calculus

Class 6 September 22, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Level Curves Given: output k (some constant) Find: All inputs Which Produce That Output Examples Isotherms, Isobars, Isoclines, Indifference Curves





JAC.

FUNDAMENTAL DIFFERENCE BETWEEN DOMAIN BEING SUBSET OF \mathcal{R}^1 AND SUBSET OF \mathcal{R}^n , n > 1:

Implications for Continuity, Derivative, Integral These all depend on **LIMIT**:

In
$$\mathcal{R}^1$$
: $\lim_{x\to a} f(x)$: 2 ways to approach a

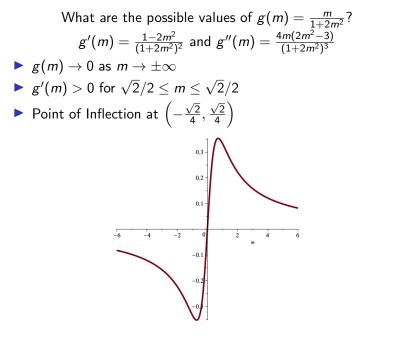
In \mathcal{R}^n : $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x})$: infinitely many ways to approach \mathbf{a}

$$f(x,y) = \{ \frac{\frac{xy}{x^2 + 2y^2}, \ (x,y) \neq (0,0) \\ 0, \ (x,y) = (0,0) \}$$

Approach along line y = mx:

$$f(x,mx) = \frac{x(mx)}{x^2 + 2(mx)^2} = \frac{mx^2}{x^2 + 2m^2x^2} = \frac{mx^2}{x^2(1+2m^2)} = \frac{m}{1+2m^2}$$

(ロ)、(型)、(E)、(E)、 E) の(()



Derivative

$$f: \mathcal{R}^{1} \to \mathcal{R}^{1}: f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$f: \mathcal{R}^{1} \to \mathcal{R}^{m}: \mathbf{f}'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
What about $f: \mathcal{R}^{n} \to \mathcal{R}^{1}$?
$$f'(\mathbf{x}) \stackrel{?=?}{:} \lim_{\mathbf{h} \to 0} \frac{f(\mathbf{x}+\mathbf{h}) - f(\mathbf{x})}{\mathbf{h}}$$
Major Problems

 $\begin{array}{l} \mbox{Major Problems}\\ \mbox{Division by vector } \mathbf{h} \mbox{ makes no sense.}\\ \mbox{Infinitely many ways } \mathbf{h} \rightarrow \mathbf{0}. \end{array}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Partial Solution Consider 2 Special Ways for h	
$\mathbf{h}=(t,0)$	$\mathbf{h} = (0, t)$
$\lim_{t\to 0} \frac{f(x+t,y)-f(x,y)}{t}$	$\lim_{t\to 0} \frac{f(x,y+t)-f(x,y)}{t}$
$\partial f / \partial x, f_x, D[1](f)$ Partial Derivative With Respect to x Treat y as a constant Use usual rules of differentiation on x	$\partial f / \partial y, f_y, D[2](f)$ Partial Derivative With Respect to y Treat x as a constant Use usual rules of differentiation on y

うんの 同 (4回)(4回)(4回)

Example:
$$f(x, y) = x^2 y$$
 at point (3,4)
 $f_x(x, y) = 2xy$ $\begin{vmatrix} f_y(x, y) = x^2 \\ f_y(3, 4) = 2 \times 3 \times 4 = 24 \end{vmatrix} \begin{vmatrix} f_y(3, 4) = 3^2 = 9 \\ f_x(x, y) = \lim_{t \to 0} \frac{f(x + t, y) - f(x, y)}{t}$
 $= \lim_{t \to 0} \frac{(x + t)^2 y - x^2 y}{t}$
 $= \lim_{t \to 0} \frac{(x^2 + 2xt + t^2)y - x^2 y}{t}$
 $= \lim_{t \to 0} \frac{x^2 y + 2xyt + t^2 y - x^2 y}{t}$
 $= \lim_{t \to 0} \frac{2xyt + t^2 y}{t}$
 $= \lim_{t \to 0} (2xy + ty)$
 $= 2xy$

Example:
$$f(x, y) = x^2 y$$

$$f_{y}(x, y) = \lim_{t \to 0} \frac{f(x, y + t) - f(x, y)}{t}$$

= $\lim_{t \to 0} \frac{x^{2}(y + t) - x^{2}y}{t}$
= $\lim_{t \to 0} \frac{x^{2}y + +x^{2}t - x^{2}y}{t}$
= $\lim_{t \to 0} \frac{x^{2}t}{t}$
= $\lim_{t \to 0} x^{2}$
= x^{2}

◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□ ◆ ○ ◆