MATH 223: Multivariable Calculus

Class 34: December 6, 2023

Divergence Theorem

Notes on Assignment 32 Assignment 33

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Announcements

Location Problem Solutions Due Friday OK To Use MATLAB Course Response Forms

> In Class Next Monday Bring Laptop/SmartPhone

Final Exam Wednesday, December 13: 7 – 10 PM Thursday, December 14: 9 AM – Noon

Integrating Vector Fields Over Surfaces

 $g(u,v)=[u,v,-2u^2-3v^2] \quad g(u,v)=[u\cos v,u\sin v,v]$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Integrating Vector Fields Over Surfaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Surface Integral

Let g be a function from an interval $[t_0, t_1]$ into \mathbb{R}^n with image γ and μ density at g(t). Then Mass of Wire $= \int_{t_0}^{t_1} \mu(t) |g'(t)| dt$ If $\mu \equiv 1$, then mass = length of curve $\int_{t_0}^{t_1} |g'(t)| dt$ Generalize To Surfaces Let D be region in plane and $g: D \to \mathbb{R}^3$ with $g(u, v) = (g_1, g_2, g_3)$ where each component function g_i is continuously differentiable.

There are two natural tangent vectors: $g_u = \frac{\partial g}{\partial u}$ and $g_v = \frac{\partial g}{\partial v}$, These determine a tangent plane. S is a **Smooth Surface** if these two vectors are linearly independent.

Note that $\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}$ is normal to the plane with $|\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}| = |\frac{\partial g}{\partial u}||\frac{\partial g}{\partial v}|\sin\theta$ = Area of Parallelogram Spanned by the Vectors

(日) (日) (日) (日) (日) (日) (日) (日)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Surface Area

 $\sigma(S) = \iint_D \left| \frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v} \right| \, du dv = \iint_D \left| g_u \times g_v \right| \, du dv$

If $\mu(g(u, v))$ is density, then mass = $\iint_D \mu \, d\sigma = \iint_D \mu(g(u, v)) |g_u \times g_v| \, du dv$

Plotting Parametrized Surface in MATLAB: [u, v] = meshgrid(0:.1:1, 0:.1:2*pi);surf(u.*cos(v), u.*sin(v), v)

Plotting Parametrized Surface in Maple: plot3d([g1(u, v), g2(u, v), g3(u, v)], u = ..., v = ...)

$\begin{array}{l} \textbf{Area of a Spiral Ramp}\\ g(u,v) = (u\cos v, u\sin v, v), 0 \leq u \leq 1, 0 \leq v \leq 3\pi \end{array}$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Area of a Spiral Ramp $g(u, v) = (u \cos v, u \sin v, v), 0 \le u \le 1, 0 \le v \le 3\pi$ $q_u = (\cos v, \sin v, 0), q_v = (-u \sin v, u \cos v, 1)$ $g_u \times g_v = \det \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos v & \sin v & 0 \\ -u \sin v & u \cos v & 1 \end{vmatrix}$ $= \left(\begin{vmatrix} \sin v & 0 \\ u \cos v & 1 \end{vmatrix}, - \begin{vmatrix} \cos v & 0 \\ -u \sin v & 1 \end{vmatrix}, \begin{vmatrix} \cos v & \sin v \\ -u \sin v & u \cos v \end{vmatrix} \right)$ $= (\sin v, -\cos v, u)$ Then $|g_u \times g_v| = \sqrt{\sin^2 v + \cos^2 v + u^2} = \sqrt{1 + u^2}$ Area = $\int_{u=0}^{u=3\pi} \int_{u=0}^{1} \sqrt{1+u^2} \, du \, dv$

If density is $\mu(\mathbf{x}) = u$, then Mass = $\int_{v=0}^{v=3\pi} \int_{u=0}^{u=1} u(1+u^2)^{1/2} du dv = \int_{v=0}^{v=3\pi} \left[\frac{1}{3}(1+u^2)^{3/2}\right]_0^1 dv$ $= \int_{v=0}^{v=3\pi} \frac{1}{3}[2^{3/2} - 1^{3/2}] dv = 3\pi \frac{1}{3}[2^{3/2} - 1] = \pi[2^{3/2} - 1]$

くしゃ 本語 アメヨア メヨア しゅう

Integrating A Vector Field Over the Spiral Ramp

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Integrating A Vector Field Over the Spiral Ramp $g(u, v) = (u \cos v, u \sin v, v), 0 \le u \le 1, 0 \le v \le 3\pi$ $g_u = (\cos v, \sin v, 0), g_v = (-u \sin v, u \cos v, 1)$ $q_u \times q_v = (\sin v, -\cos v, u)$ Suppose our vector field is $\mathbf{F}(x, y, z) = (x^2, 0, z^2)$ So $F(q(u, v)) = (u^2 \cos^2 v, 0, v^2)$ The set $D = \{(u, v) : 0 \le u \le 1, 0 \le v \le 3\pi\}$ We want $\int_D F(g(u,v)) \cdot (g_u \times g_v)$ which equals $\int_{v=0}^{3\pi} \int_{u=0}^{1} \left[u^2 \cos^2 v \sin v + uv^2 \right] du dv$ $=\int_{v=0}^{3\pi} \left[\frac{u^3}{3} \cos^2 v \sin v + \frac{u^2}{2} v^2 \Big|_{u=0}^1 \right] dv =$ $\int_{v=0}^{3\pi} \left[\frac{1}{3} \cos^2 v \sin v + \frac{1}{2} v^2 \right] dv$ $= \left[\frac{-\cos^3 v}{9} + \frac{v^3}{6} \right]^{3\pi} = \frac{1}{9} + \frac{3^3 P i^3}{6} - \frac{-1}{9} = \frac{2}{9} + \frac{9}{2} \pi^3$

(日) (日) (日) (日) (日) (日) (日) (日)

Johann Carl Friedrich Gauss

Born: 30 April 30, 1777 in Brunswick, Duchy of Brunswick Died: 23 February 23, 1855 in Göttingen, Hanover

> Biography http://www.gapsystem.org/~history/Biographies/Gauss.html

Gauss's Theorem aka Divergence Theorem Planar Version: $\int_D \text{div } \mathbf{F} = \int_{\gamma} \mathbf{F} \cdot \mathbf{N}$

Three Dimensional Version

 ∂R is 2-dimensional surface surrounding 3-dimensional region R $\int_R \ {\rm div} \ {\bf F} = \int_{\partial R} {\bf F} \cdot {\bf N}$

Gauss's Theorem

The Setting

- ${\mathcal R}$ Bounded Solid Region in ${\mathbb R}^3$
- - **F** Continuously Differentiable Vector Field in \mathcal{R}

The Theorem

In this setting
$$\int_{\mathcal{R}} \operatorname{div} \mathbf{F} \, dV = \int_{\partial \mathcal{R}} \mathbf{F} \cdot d\mathbf{S}$$

Example Verify Gauss's Theorem where \mathcal{R} is solid cylinder of radius a and height b with the z-axis as the axis of the cylinder and

For $\int_{Bottom} \mathbf{F} \cdot dS$, unit normal is (0,0,-1) Then $(x, y, z) \cdot (0, 0, -1) = -z$ but z = 0 so $\int_{Bottom} \mathbf{F} \cdot dS = 0$

For $\int_{Top} \mathbf{F} \cdot dS$, unit normal is (0,0,1) Then $(x, y, z) \cdot (0, 0, +1) = z$ but z = b so $\int_{Top} \mathbf{F} \cdot dS$ is $b \times$ area of top $= b\pi a^2$

| ◆ □ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ □ ▶ ● ○ ○ ○ ○

Vector Field $\mathbf{F} = (x, y, z)$ Surface: $x^2 + y^2 = a^2, 0 \le z \le b$ $g(u, v) = (a \cos u, a \sin u, v), 0 \le u \le 2\pi, 0 \le v \le b$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$\begin{split} \text{Finally, } & \int_{Side} \mathbf{F} \cdot dS \\ g(u,v) &= (a\cos u, a\sin u, v), 0 \leq u \leq 2\pi, 0 \leq v \leq b \\ g_u &= (-a\sin u, a\cos u, 0), \ g_v &= (0,0,1) \\ & \mathbf{g}_u \times g_v = \ \det \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -a\sin u & a\cos u & 0 \\ 0 & 0 & 1 \end{vmatrix} \\ = & (\text{expanding along bottom row}) \ (a\cos u, a\sin u, 0) \\ & \text{Thus } |g_u \times g_v| = \sqrt{a^2\cos^2 u + a^2\sin^2 u + 0^2} = a \\ \text{Also } F(g(u,v)) &= (a\cos u, a\sin u, v) \ \text{so } F(g(u,v)) \cdot (g_u \times g_v) = \\ & a^2\cos^2 u + a^2\sin^2 u + 0 = a^2. \\ & \text{so } \int_{Side} \mathbf{F} \cdot dS = \int_{v=0}^{b} \int_{u=0}^{2\pi} a^2 du \ dv = 2\pi a^2 b \\ & \text{Putting it altogether: } \int_{S} \mathbf{F} \cdot dS \\ &= \int_{Bottom} \mathbf{F} \cdot dS + \int_{Top} \mathbf{F} \cdot dS + \int_{Side} \mathbf{F} \cdot dS = 0 + \pi a^2 b + 2\pi a^2 b = \\ & 3\pi a^2 b \end{split}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ▶ ▲□ ▶

On The Other Hand, we compute
$$\int_R \operatorname{div} \mathbf{F}$$

 $\mathbf{F} = (x, y, z)$
div $\mathbf{F} = 1 + 1 + 1 = 3$
The solid R is more easily described in polar coordinates
 $0 < \theta < 2\pi$ $0 < r < a$ $0 < z < b$.

$$\int_{R} \operatorname{div} \mathbf{F} = \int_{\theta=0}^{2\pi} \int_{z=0}^{b} \int_{r=0}^{a} \operatorname{div} \mathbf{F} r dr dz d\theta = \int_{\theta=0}^{2\pi} \int_{z=0}^{b} \int_{r=0}^{a} 3r dr dz d\theta$$

$$\int_{\theta=0}^{2\pi} \int_{z=0}^{b} 3\frac{r^2}{2} \Big|_{r=0}^{a} dz d\theta = \int_{\theta=0}^{2\pi} \int_{z=0}^{b} \frac{3}{2} a^2 dz d\theta = \int_{\theta=0}^{2\pi} \frac{3}{2} a^2 b d\theta = 2\pi \frac{3}{2} a^2 b$$
$$= 3a^2 b\pi$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Finding $\int_{S} \mathbf{F} \cdot d\sigma$ directly is impossible.

A Clever Way To Find $\int_{S} \mathbf{F} \cdot d\sigma$ indirectly.

Cap the Surface with a Disk so New Surface Bounds a 3-Dimensional Region

Form closed surface $S \cup S'$ where S' is the disk of radius 1 $(x^2 + y^2 = 1)$ in z = 0 plane. Then $\int_{\partial r} \mathbf{F} = \int_{S \cup S'} \mathbf{F} = \int_{S} \mathbf{F} + \int_{S'} \mathbf{F}$

But by Gauss's Theorem, this integral equals 0. Hence $\int_S {\bf F} = -\int_{S'} {\bf F}$

Now

$$\int_{S'} \mathbf{F} = -\int (--, --, x^2 + y^2 + 3) \cdot (0, 0, -1) = \int x^2 + y^2 + 3 \, dx \, dy$$

$$= \int_{\theta=0}^{2\pi} \int_{r=0}^{1} (r^2 + 3) \, r \, dt \, d\theta = \frac{7}{2}\pi$$

Next Time: Stokes's Theorem

$\int_{S} \operatorname{curl} \mathbf{F} = \int_{\partial S} \mathbf{F}$ S is a Surface in \mathbb{R}^{3}

<u>Theorem:</u> A continuously differentiable gradient field has a symmetric Jacobian matrix.

<u>Proof</u>: If **F** is a gradient field, then $\mathbf{F} = \nabla f$ for some real-valued function f. Then $\mathbf{F} = (f_x, f_y)$ so the Jacobian matrix is

$$J = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$$

By Continuity of Mixed Partials, $f_{xy} = f_{yx}$ so J is symmetric.

<u>Theorem</u>: If \mathbf{F} is conservative, then its Jacobian is symmetric.

<u>Theorem</u>: If \mathbf{F} is conservative, then its Jacobian is symmetric.

The converse (Symmetric Jacobian Implies Conservative) is **FALSE** in general.

Example: Consider the vector field $\mathbf{F}(x,y) = \left(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}\right)$ $\frac{1}{2^2}$ $\frac{1}$. · · · · -2 - · · · · defined for all $(x, y) \neq (0, 0)$ Then Jacobian $= \begin{pmatrix} - & \frac{y^2 - x^2}{(x^2 + y^2)^2} \\ \frac{y^2 - x^2}{(x^2 + y^2)^2} & - \end{pmatrix}$

(日) (日) (日) (日) (日) (日) (日) (日)

$$\mathbf{F}(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$$

Has a Symmetric Jacobian But Is Not Conservative! If \mathbf{F} were conservative, then the line integral of \mathbf{F} around any closed loop would be 0. Consider γ the unit circle as a loop running counterclockwise starting and ending at (1,0).

$$\mathbf{F}(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$$

 γ : unit circle as a loop running counterclockwise starting and ending at (1.0). We parametrize γ by $g(t) = (\cos t, \sin t), 0\pi$ so that $g'(t) = (-\sin t, \cos t)$ and

$$\mathbf{F}(g(t)) = \left(\frac{-\sin t}{\cos^2 t + \sin^2 t}, \frac{\cos t}{\cos^2 t + \sin^2 t}\right) = (-\sin t, \cos t)$$

 $\begin{aligned} \mathbf{F}(g(t)) \cdot g'(t) &= (-\sin t, \cos t) \cdot (-\sin t, \cos t) = \sin^2 t + \cos^2 t = 1\\ \text{Thus } \int_{\gamma} \mathbf{F} &= \int_{0}^{2\pi} 1 \, dt = 2\pi \neq 0. \end{aligned}$

The Domain of the Vector Field

(Plane minus the Origin) Is Not Simply Connected.

Simple Connectedness

A set B is **simply connected** if every closed curve in B can be continuously contracted to a point in such a way as to stay in Bduring the contraction. More precisely,

Definition: An open set B is **simply connected** if every piecewise smooth closed curve lying in B is the border of some piecewise smooth orientable surface S lying in B, and with parameter domain a disk in \mathcal{R}^2 .

Theorem: Let \mathbf{F} be a continuously differentiable vector field defined on an open set B in \mathcal{R}^2 or \mathcal{R}^3 . If B is simply connected and curl \mathbf{F} is identically zero in B, then \mathbf{F} is a gradient field in B; that is, there is a real-valued function f such that $\mathbf{F} = \nabla f$

(a) A monthly be a series of all descents

(d) A model also associated demote

) Q (

æ

 Theorem: Let \mathbf{F} be a continuously differentiable vector field defined on an open set B in \mathcal{R}^2 or \mathcal{R}^3 . If B is simply connected and curl \mathbf{F} is identically zero in B, then \mathbf{F} is a gradient field in B; that is, there is a real-valued function f such that $\mathbf{F} = \nabla f$