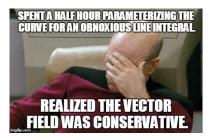
MATH 223: Multivariable Calculus



Class 33: December 4, 2023

Notes on Assignment 31
Assignment 32
Conservative Vector Fields
Surface Integrals

Rough Weights for Course Components

Exam1	20%
Exam 2	20%
Exam 3	20%
Final Exam	30%
Project	10 %

Final Exam:

MATH 223A: Tuesday, December 13

7 PM - 10 PM

MATH 223B: Wednesday, December 14: 9 AM - Noon

Announcements **Team Projects Due Friday, December 9**

Today

Proof of Green's Theorem Conservative Vector Fields Surface Integrals

Conservative Vector Fields

F is continuously differentiable vector field in the plane $\mathbf{F}: \mathbb{R}^2 \to \mathbb{R}^2$ with $\mathbf{F}(x,y) = (F(x,y),G(x,y))$ where F and G are each real-valued functions.

Here curl ${\bf F}$ is a real-valued function G_x-F_y Green's Theorem: $\int_D {\rm curl}\ {\bf F}=\int_\gamma {\bf F}$

Three Important Properties of Vector Fields

- **A F** is **CONSERVATIVE** means $\mathbf{F} = \nabla f$ for some $f: \mathbb{R}^2 \to \mathbb{R}^1$
- **B F** is **IRROTATIONAL** means curl $\mathbf{F} = 0$
- **C F** is **PATH INDEPENDENT** means $\int_{\gamma_1} \mathbf{F} = \int_{\gamma_2} \mathbf{F}$ for any paths γ_1 and γ_2 from **a** to **b** where **a** and **b** are any points in the plane.

Major Goal: Show THESE PROPERTIES ARE EQUIVALENT

A implies B

- **A F** is **CONSERVATIVE**means $\mathbf{F} = \nabla f$ for some $f: \mathbb{R}^2 \to \mathbb{R}^1$
- **B F** is **IRROTATIONAL** means curl $\mathbf{F} = 0$

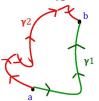
Suppose **F** is Conservative Then
$$(F,G)=\mathbf{F}=\nabla f=(f_x,f_y)$$
 so $f_x=F$ and $f_y=G$ Thus $G_x=f_{yx}$ and $F_y=f_{xy}$ so curl $\mathbf{F}=G_x-F_y=f_{yx}-f_{xy}=0$

by equality of mixed partials.

B implies C will follow from Green's Theorem

- **B F** is **IRROTATIONAL** means curl $\mathbf{F} = 0$
- **C F** is **PATH INDEPENDENT** means $\int_{\gamma_1} \mathbf{F} = \int_{\gamma_2} \mathbf{F}$ for any paths γ_1 and γ_2 from **a** to **b** where **a** and **b** are any points in the plane.

Let **a** and **b** are any points in the plane and γ_1 and γ_2 two paths from **a** to **b**. Then $-\gamma_1$ runs from **b** to **a**



and $\gamma = \gamma_1 - \gamma_2$ is a loop that begins and ends at a Let D be the enclosed region.

By Green's Theorem
$$\int_{\gamma} \mathbf{F} = \iint_{D} \operatorname{curl} \mathbf{F} = \iint_{D} 0 = 0$$

Thus $0 = \int_{\gamma} \mathbf{F} = \int_{\gamma_{1} - \gamma_{2}} \mathbf{F} = \int_{\gamma_{1}} \mathbf{F} - \int_{\gamma_{2}} \mathbf{F}$
Hence $\int_{\gamma_{2}} \mathbf{F} = \int_{\gamma_{1}} \mathbf{F}$

C implies A

C F is **PATH INDEPENDENT** means $\int_{\gamma_1} \mathbf{F} = \int_{\gamma_2} \mathbf{F}$ for any paths γ_1 and γ_2 from **a** to **b** where **a** and **b** are any points in the plane.

A F is **CONSERVATIVE**means $\mathbf{F} = \nabla f$ for some $f: \mathbb{R}^2 \to \mathbb{R}^1$

Idea:

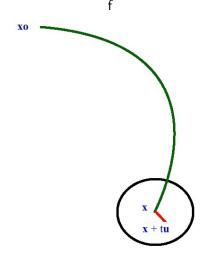
Fix \mathbf{x}_0 in \mathbb{R}^n and let \mathbf{x} be arbitrary point in \mathbb{R}^n . Let γ be a curve from \mathbf{x}_0 to \mathbf{x} . Then $\int_{\gamma} \mathbf{F}$ will be a function of \mathbf{x} whose gradient is \mathbf{F} .

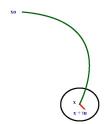
Theorem Let ${\bf F}$ be a continuous vector field defined in a polygonally connected open set D of ${\mathbb R}^n$. If the line integral $\int_\gamma {\bf F}$ is independent of piecewise smooth path γ from ${\bf x}_0$ to ${\bf x}$ in D, then if $f({\bf x})=\int_\gamma {\bf F}$, it is true that $\nabla f={\bf F}$.

Here
$$\mathbf{F} = \overline{(F,G)}$$
 so $F(x,y) = (3x^2 + y, e^y + x)$
Here $\mathbf{F} = \overline{(F,G)}$ so $F(x,y) = 3x^2 + y, G(x,y) = e^y + x$
Hence $F_y = 1, G_x = 1$ so curl $\mathbf{F} = G_x - F_y = 0$
Let's build f so its gradient $\nabla f = (f_x, f_y) = (3x^2 + y, e^y + x)$
We need $f_x = 3x^2 + y$ so do "partial integration with respect to x ":
 $f(x) = x^3 + yx + g(y)$. [Why is there $g(y)$?]
Then $f_y = 0 + x + g'(y)$ which should equal $x + e^y$ so need $g'(y) = e^y$
which we can get by letting $g(y) = e^y$.
Hence we can choose $f(x,y) = x^3 + yx + e^y + C$.

Let's build the potential function in a different way using the theorem with $\mathbf{F}(x,y) = (3x^2 + y, e^y + x)$ Pick $\mathbf{x}_0 = (0,0)$ and let $\mathbf{x} = (x,y)$ be an arbitrary point. Choose the straight line between them as the path γ with parametrization q(t) = (xt, yt), 0 < t < 1 so q'(t) = (x, y)Then $\mathbf{F}(q(t)) = F(xt, yt) = (3x^2t^2 + yt, e^{yt} + x)t$ so $\mathbf{F}(q(t)) \cdot q'(t) = (3x^2t^2 + yt, e^{yt} + xt) \cdot (x, y)$ $=3x^3t^2 + xyt + ye^{yt} + xyt = 3x^3t^2 + 2xyt + ye^{yt}$ Now $\int_{\Sigma} \mathbf{F} = \int_{0}^{1} (3x^{3}t^{2} + 2xyt + ye^{yt}) dt$ $= \left[x^3t^3 + xyt^2 + e^{yt}\right]_{t=0}^{t=1}$ $=(x^3+xy+e^y)-(0+0+1)=x^3+xy+e^y-1$

Theorem Let ${\bf F}$ be a continuous vector field defined in a polygonally connected open set D of ${\mathbb R}^n$. If the line integral $\int_\gamma {\bf F}$ is independent of piecewise smooth path γ from ${\bf x}_0$ to ${\bf x}$ in D, then if $f({\bf x})=\int_\gamma {\bf F}$, it is true that $\nabla f={\bf F}$.





Let g be parametrization of line segment from ${\bf x}$ to ${\bf x}+t{\bf u}$ so $g(t)={\bf x}+v{\bf u}, 0\leq v\leq t \text{ and } g'(t)={\bf u}$

$$\begin{aligned} f(\mathbf{x} + t\mathbf{u}) - f(\mathbf{x}) &= \int_{\mathbf{x}_0}^{\mathbf{x} + t\mathbf{u}} \mathbf{F} - \int_{\mathbf{x}_0}^{\mathbf{x}} \mathbf{F} = \int_{\mathbf{x}}^{\mathbf{x} + t\mathbf{u}} \mathbf{F}(\mathbf{x} + v\mathbf{u}) \\ &= \int_0^t \mathbf{F}(\mathbf{x} + v\mathbf{u}) \cdot \mathbf{u} \ dv \end{aligned}$$

To find $\frac{\partial f}{\partial x_j}(\mathbf{x})$, let \mathbf{u} be the unit vector $\mathbf{e}_j=(0,\,0,\,\dots\,,\,1,\,0,\,0.$. . . 0) in the jth direction.

$$\frac{\partial f}{\partial x_j}(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{u}) - f(\mathbf{x})}{t}$$
$$= \lim_{t \to 0} \frac{1}{t} \int_0^t \mathbf{F}(\mathbf{x} + v\mathbf{u}) \cdot \mathbf{u} \, dv$$
$$= \lim_{t \to 0} \frac{1}{t} \int_0^t \mathbf{F}(\mathbf{x} + v\mathbf{e}_j) \cdot \mathbf{e}_j \, dv$$

But this last expression is the derivative of the integral with respect to t evaluated at t=0 which is $\mathbf{F}\cdot\mathbf{e}_j=F_j(\mathbf{x})$ (Using Fundamental Theorem of Calculus)

Symmetry of Jacobian Matrix for Conservative Vector Field

Let $\mathbf{F}=(F(x,y),G(x,y))$ be a conservative vector field in the plane which we can recognized by $G_x=F_y$

$$\mathbf{F'} = \begin{pmatrix} F_x & F_y \\ G_x & G_y \end{pmatrix}$$
 Note symmetry of Jacobian Matrix.

How do things generalize to higher dimensions?

Example:
$$\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$$
 by

$$\begin{split} F(x,y,z) &= (yz^2 + \overline{\sin y + 3}x^2, xz^2 + x\cos y + e^z, 2xyz + ye^z + \frac{1}{z}) \\ \mathbf{F'} &= \begin{pmatrix} 6x & z^2 + \cos y & 2yz \\ z^2 + \cos y & -x\sin y & 2xz + e^z \\ 2yz & 2xz + e^z & 2xy + ye^z - \frac{1}{z^2} \end{pmatrix} \\ &\quad \text{To find } f \text{ so that } \nabla f = \mathbf{F} \text{:} \end{split}$$

- **Step 1**: integrate first component of **F** with respect to x: $f(x, y, z) = yz^2x + x\sin y + x^3 + G(y, z)$
- **Step 2**: Take derivative of trial f respect to y and set equal to second component of \mathbf{F} :

$$f_y=z^2x+x\cos y+0+G_y(x,y) \text{ must }=xz^2+x\cos y+e^z$$
 Need $G_y(x,y)=e^z$ so choose $G(x,y)=e^zy+H(z)$ So far, $f(x,y,z)=yz^2x+x\sin y+x^3+e^zy+H(z)$

Step 3:Take derivative of trial f respect to z and set equal to third component of ${\bf F}$;

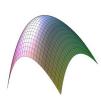
$$f_z(x,y,z) = 2xyz + 0 + 0 + e^zy + H'(z) \text{ must } = 2xyz + e^zy + \frac{1}{z}$$
 Need $H'(z) = \frac{1}{z}$ so choose $H(x) = \ln|z| + C$ Thus $f(x,y,z) = f(x,y,z) = yz^2x + x\sin y + x^3 + e^zy + \ln|z| + C$

<u>Theorem</u> If **F** is a conservative vector field on $\mathbb{R}^N=n$ and is continuously differentiable, then the Jacobian matrix is symmetric.

Proof: Equality of mixed partials.

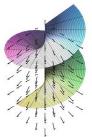
<u>Theorem</u> Suppose **F** is a continuously differentiable vector field on \mathbb{R}^n whose Jacobian matrix is symmetric. Then **F** is conservative

Integrating Vector Fields Over Surfaces



$$g(u,v) = [u, v, -2u^2 - 3v^2]$$
 $g(u,v) = [u\cos v, u\sin v, v]$

$$g(u, v) = [u\cos v, u\sin v, v]$$



Smooth Curve γ	Smooth Surface S	
$g: I \text{ in } \mathbb{R}^1 o \mathbb{R}^n$	$g:D$ in $\mathbb{R}^2 o \mathbb{R}^3$	
$\text{Length} = \int_{I} g'(t) dt$	Area $\sigma(S) = \iint_D g_u imes g_v du dv$	
$\begin{aligned} Mass &= \int_I \mu(g(t)) g'(t) dt \\ Line Integral: \end{aligned}$	Mass $= \iint_D \mu d\sigma$ Surface Integral	
Line integral.	Surface Integral	
$\int_{\gamma} \mathbf{F} = \int_{I} \mathbf{F}(g(t)) \cdot g'(t) dt$	$\iint_{S} \mathbf{F} = \iint_{D} \mathbf{F}(g(u, v)) \cdot (g_{u} \times g_{v})$	

Surface Integral

Let g be a function from an interval $[t_0,t_1]$ into \mathbb{R}^n with image γ and mu density at g(t).

Then Mass of Wire $=\int_{t_0}^{t_1} \mu(t) |g'(t)| \ dt$

If $\mu\equiv 1$, then mass = length of curve $\int_{t_0}^{t_1} |g'(t)| \ dt$ Generalize To Surfaces

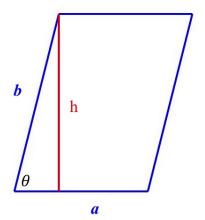
Let D be region in plane and $g:D\to\mathbb{R}^3$ with $g(u,v)=(g_1,g_2,g_3)$ where each component function g_i is continuously differentiable.

There are two natural tangent vectors: $g_u = \frac{\partial g}{\partial u}$ and $g_v = \frac{\partial g}{\partial v}$, These determine a tangent plane.

S is a **Smooth Surface** if these two vectors are linearly independent.

Note that $\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}$ is normal to the plane with $|\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}| = |\frac{\partial g}{\partial u}||\frac{\partial g}{\partial v}|\sin\theta$

= Area of Parallelogram Spanned by the Vectors

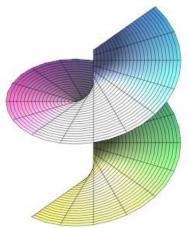


$$\begin{split} \sin\theta &= \frac{h}{|\mathbf{b}|} \text{ so } h = |\mathbf{b}| \sin\theta \\ \text{Area of Parallelogram} &= (\text{Base})(\text{Height}) = |\mathbf{a}||\mathbf{b}| \sin\theta \\ \mathbf{a} &= g_u, \mathbf{b} = g_v \\ |g_u \times g_v| &= |g_u||g_v| \sin\theta \end{split}$$

Surface Area

$$\begin{split} \sigma(S) &= \iint_D |\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}| \ du dv = \iint_D |g_u \times g_v| \ du dv \\ &\text{If } \mu(g(u,v)) \text{ is density, then mass} = \\ &\iint_D \mu \ d\sigma = \iint_D \mu(g(u,v))|g_u \times g_v| \ du dv \\ &\text{Plotting Parametrized Surface in } Maple: \\ &plot 3d([g1(u,v),g2(u,v),g3(u,v)],u=...,v=...) \end{split}$$

$\label{eq:gunder} \mbox{Area of a Spiral Ramp} \\ g(u,v) = (u\cos v, u\sin v, v), 0 \leq u \leq 1, 0 \leq v \leq 3\pi$



Area of a Spiral Ramp

$$\begin{split} g(u,v) &= (u\cos v, u\sin v, v), 0 \leq u \leq 1, 0 \leq v \leq 3\pi \\ g_u &= (\cos v, \sin v, 0), g_v = (-u\sin v, u\cos v, 1) \\ g_u &\times g_v = \det \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos v & \sin v & 0 \\ -u\sin v & u\cos v & 1 \end{vmatrix} \\ &= \left(\begin{vmatrix} \sin v & 0 \\ u\cos v & 1 \end{vmatrix}, -\begin{vmatrix} \cos v & 0 \\ -u\sin v & 1 \end{vmatrix}, \begin{vmatrix} \cos v & \sin v \\ -u\sin v & u\cos v \end{vmatrix}\right) \\ &= (\sin v, -\cos v, u) \\ \text{Then } |g_u &\times g_v| &= \sqrt{\sin^2 v + \cos^2 v + u^2} = \sqrt{1 + u^2} \\ \text{Area} &= \int_{v=0}^{v=3\pi} \int_{u=0}^{1} \sqrt{1 + u^2} \, du \, dv \\ \text{If density is } \mu(\mathbf{x}) &= u, \text{ then} \\ \text{Mass} &= \\ \int_{v=0}^{v=3\pi} \int_{u=0}^{u=1} u(1 + u^2)^{1/2} \, du \, dv = \int_{v=0}^{v=3\pi} \left[\frac{1}{3} (1 + u^2)^{3/2} \right]_0^1 \, dv \\ &= \int_{v=0}^{v=3\pi} \frac{1}{3} [2^{3/2} - 1^{3/2}] \, dv = 3\pi \frac{1}{2} [2^{3/2} - 1] = \pi [2^{3/2} - 1] \end{split}$$