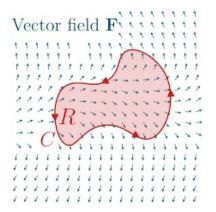
MATH 223: Multivariable Calculus



Class 32: December 1, 2023

Notes on Assignment 30
Assignment 31
Green's Theorem
Notes on Exam 3 (Median: 81)
Using MATLAB to Locate and Identify Extreme
Points

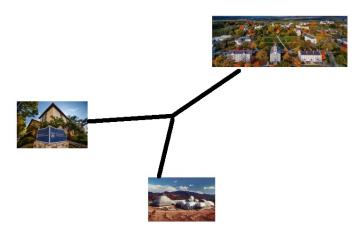
Rough Weights for Course Components

Exam1	20%
Exam 2	20%
Exam 3	20%
Final Exam	30%
Project	10 %

Final Exam:
Section A
Wednesday, December 13
7 PM - 10 PM

Final Exam:
Section B
Thursday, December 14
9 AM – Noon

Location Problem



Due: Friday, December 8

Announcements

Today More Green's Theorem Conservative Vector Fields

Divergence of a Vector Field

<u>Definition</u> div $\mathbf{F} = \text{trace of } \mathbf{F'}$, the Jacobi Matrix In general, div \mathbf{F} is a real -valued function of n variables.

Curl of a Vector Field

Curl measures local tendency of a vector field and its flow lines to circulate around some axis.

The curl of a vector field is itself a vector field.

Setting; $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$ is our vector field

$$\mathbf{F} = (F_1, F_2, F_3)$$
 so $\mathbf{F}(x, yz) = (F_1(x, y, z), F_2(x, y, z), F_3(x, y, z))$

Formal Definition: curl
$$\mathbf{F} = \begin{pmatrix} \frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \end{pmatrix}$$

Mnemonic Device:

$$\text{curl } \mathbf{F} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k}. \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{pmatrix}$$

Expand along first row:

$$\text{curl } \mathbf{F} = \begin{vmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_2 & F_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\ F_1 & F_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ F_1 & F_2 \end{vmatrix} \mathbf{k}$$

Scalar Curl for Vector Fields in Plane

$$\mathbf{F}=(F,G,0)$$
 where $F(x,y)$ and $G(x,y)$ are functions only of x and
$$y.$$
 Then curl $\mathbf{F}=(0,0,G_x-F_y)$

Note: Curl and Conservative Vector Field Suppose $\mathbf{F}=(F,G,0)$ is gradient field with $\mathbf{F}=\nabla f$. Then $F=f_x$ and $G=f_y$ In this case, Curl $\mathbf{F}=(0,0,f_{yx}-f_{xy})=(0,0,0)$ by Clairault's Theorem on Equality of Mixed Partials.

Green's Theorem in the Plane

$$\iint_{D} \operatorname{curl} \mathbf{F} = \int_{\gamma} \mathbf{F}$$

D is bounded plane region.

 $C=\gamma$ is piecewise smooth boundary of D

F and G are continuously differentiable functions defined on D

$$\int \int (G_x - F_y) dx dy = \int_{G} (F, G)$$

where γ is parametrized so it is traced once with D on the left.

Application of Green's Theorem in the Plane

$$\iint_D \operatorname{curl} \mathbf{F} = \int_{\gamma} \mathbf{F}$$

Example
$$\mathbf{F}(x,y) = (0,x)$$
 implies $curl|: \mathbf{F} = 1 - 0 = 1$
Hence $\iint_D \text{curl } \mathbf{F} = \iint_D 1 = \text{ area of } D$

Green's Theorem enables us to find the area of a planar region if we can develop a parametrization of its boundary.

Example Consider the unit disk D of radius r centered at origin.

Let
$$g(t) = (r\cos t, r\sin t), 0 \le t \le 2\pi$$

So $g'(t) = (r\sin t, r\cos t)$
and $\mathbf{F}(g(t)) = (0, r\cos t)$
Then $\mathbf{F}(g(t)) \cdot g'(t) = r^2\cos^2 t \, dt$

Thus area of $D = \iint_D 1 = \iint_D \operatorname{curl} \mathbf{F} = \int_{\gamma} \mathbf{F} = \int_0^{2\pi} r^2 \cos^2 t \, dt$ $\int_0^{2\pi} r^2 \cos^2 t \, dt = r^2 \int_0^{2\pi} \frac{1 + \cos 2t}{2\pi} \, dt = r^2 \left[t + \frac{1}{2} \sin 2t \right]^{2\pi} = \pi$

$$\int_0^{2\pi} r^2 \cos^2 t \, dt = r^2 \int_0^{2\pi} \frac{1 + \cos 2t}{2} \, dt = \frac{r^2}{2} \left[t + \frac{1}{2} \sin 2t \right]_0^{2=\pi} = \pi r^2$$

Using Green's Theorem

- (1) Compute $\iint_D \operatorname{curl} \mathbf{F}$ by using $\int_{\gamma} \mathbf{F}$
- (2) Compute $\int_{\gamma} \mathbf{F}$ by using $\iint_{D} \operatorname{curl} \mathbf{F}$

Using Green's Theorem

Compute
$$\int_{\gamma} \mathbf{F}$$
 by using $\iint_{D} \operatorname{curl} \mathbf{F}$ $\underline{\operatorname{Example}}$ Let $\mathbf{F}(x,y) = (\frac{1}{y}\cos\frac{x}{y}, -\frac{x}{y^2}\cos\frac{x}{y})$ Compute $\int_{\gamma} \mathbf{F}$ as $\iint_{D} (G_x - F_y)$ Here $G_x = (-\frac{x}{y^2})_x\cos\frac{x}{y} + -\frac{x}{y^2}(\cos\frac{x}{y})_x$ $= -\frac{1}{y^2}\cos\frac{x}{y} - \frac{x}{y^2}(-\sin\frac{x}{y})(\frac{1}{y})$ $= -\frac{1}{y^2}\cos\frac{x}{y} + \frac{x}{y^3}(\sin\frac{x}{y})$ Similarly, $F_y = -\frac{1}{y^2}\cos\frac{x}{y} + \frac{x}{y^3}(+\sin\frac{x}{y})$ $= -\frac{1}{y^2}\cos\frac{x}{y} + \frac{x}{y^3}(+\sin\frac{x}{y})$ So $G_x - F_y = 0$. Hence $\int_{\gamma} \mathbf{F} = 0$

Example Find

 $\int_{\gamma} (1+10xy+y^2) \, dx + (6xy+5x^2) \, dy = \int_{\gamma} (1+10xy+y^2, 6xy+5x^2)$ where γ is boundary of the rectangle with vertices (0,0), (2,0), (2,1), and (0,1).

Note: Direct Computation requires 4 integrals. $F(x,y) = 1 + 10xy + y^2. \quad G(x,y) = 6xy + 5x^2$ $F_y = 10x + 2y \qquad . \quad G_x = 6y + 10x$ $G_x - F_y = 6y + 10x - 10x - 2y = 4t$ $\int_{\gamma} \mathbf{F} = \iint_{D} \operatorname{curl} \mathbf{F} = \int_{0}^{2} \int_{0}^{1} 4y \ dy \ dx = \int_{0}^{2} \left[2y^2 \right]_{0}^{1} = \int_{0}^{2} 2dx = 4$

George Green 1793 – 1841

AN ESSAY

APPLICATION

MATHEMATICAL ANALYSIS TO THE THEORIES OF ELECTRICITY AND MAGNETISM.

Mikhail Ostrogradsky 1801 – 1861

Gauss' Theorem

Green:
$$\iint_D \operatorname{curl} \mathbf{F} = \int_{\gamma} \mathbf{F}$$

If
$${\bf F}=(F_1,F_2)$$
 then curl ${\bf F}={\partial F_2\over\partial x}-{\partial F_1\over\partial y}$

Apply Green's Theorem to
$$\mathbf{H}=(-G,F)$$
 where $\mathbf{F}=(F,G)$ $\int_{\gamma}\mathbf{H}=\iint_{D}\ \mathrm{curl}\ (F_{x}-(-G_{y}))=\iint_{D}(F_{x}+G_{y})=\iint_{D}\ \mathrm{div}\ \mathbf{F}$

On the other hand,
$$\int_{\gamma} \mathbf{H} = \int_{a}^{b} \mathbf{H} \cdot \mathbf{g'} = \int_{a}^{b} (-G, F) \cdot (g_{1}', g_{2}')$$

$$\int_{a}^{b} (-G, F) \cdot (g_{1}', g_{2}') = \int_{a}^{b} -Gg_{1}' + Fg_{2}' = \int_{a}^{b} (F, G) \cdot (g_{2}', -g_{1}')$$
 Observe
$$(g_{2}', -g_{1}') \cdot (g_{1}', g_{2}') = g_{1}'g_{2}' - g_{1}'g_{2}' = 0$$

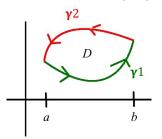
So $(g_2^{\prime},-g_1^{\prime})$ is orthogonal to the tangent vector so it is a normal vector N.

Thus
$$\int_{\gamma}\mathbf{H}=\int_{a}^{b}(F,G)\cdot(g_{2}^{'},-g_{1}^{'})=\int_{a}^{b}(F,G)\cdot\mathbf{N}=\int_{\gamma}\mathbf{F}\cdot\mathbf{N}$$

Putting everything together:
$$\boxed{ \iint_D \ {\rm div} \ {\bf F} = \int_{\gamma} {\bf H} = \int_{\gamma} {\bf F} \cdot {\bf N} }$$

Proof of Green's Theorem in an Elementary Case

Case : Boundary of D is made up of the graphs of two functions defined on interval [a,b].



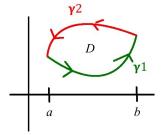
Vector Field
$$\mathbf{F}=(F,G)=(F,0)+(0,G)$$

$$\gamma_1=\text{image of }g_1$$

$$\gamma_2=\text{image of }g_2$$
 Need to show $\iint_D[G_x-Fy]=\int_\gamma\mathbf{F}=\int_\gamma[(F,0)+(0,G)]$ Will show $\iint_D-Fy=\int_\gamma(F,0)$

Need to show
$$\iint_D [G_x - Fy] = \int_\gamma \mathbf{F} = \int_\gamma [(F,0) + (0,G)]$$
 Will show $\iint_D -Fy = \int_\gamma (F,0)$

We tackle the line integral first. Start with γ_1



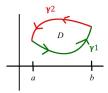
We can parametrize γ_1 by a function $g(t)=(t,\phi(t))$ for $a\leq t\leq b$

Then
$$g'(t) = (1, \phi_1'(t))$$

Now
$$(F,0) \cdot g'(t) = (F,0) \cdot (1,\phi_1'(t)) = F = F(t,\phi_1(t))$$

so
$$\int_{\gamma_1} (F,0) = \int_a^b F(t,\phi_1(t)) dt$$

Now we take up γ_2



Consider Parametrization of γ_2 as $g(t)=(t,\phi_2(t)), a\leq t\leq b$. This would actually traces out γ_2 in the opposite direction. It is the parametrization of $-\gamma_2$

Again we have
$$g'(t)=(1,\phi_2^{'})$$
 and $(F,0)\cdot g'(t)=F(t,\phi_2(t))$ so $\int_{-\gamma_2}(F,0)=\int_a^bF(t,\phi_2(t)).$

Thus
$$\int_{-\gamma_2} (F,0) = -\int_{\gamma_2}^b F(t,\phi_2(t)).$$

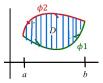
Finally,
$$\int_{\gamma} (F,0) = \int_{\gamma_1} (F,0) + \int_{\gamma_2} (F,0) = \int_a^b F(t,\phi_1(t)) dt - \int_a^b F(t,\phi_2(t)) dt$$

$$\int_{\gamma} (F,0) = \int_{a}^{b} F(t,\phi_{1}(t)) - F(t,\phi_{2}(t)) dt$$

Goal: Show $\iint_D -Fy = \int_{\gamma} (F,0)$

So far: $\int_{\gamma} (F,0) = \int_a^b F(t,\phi_1(t)) - F(t,\phi_2(t)) dt$

Now turn to the curl part:



$$\iint_{D} -Fy = -\iint_{D} F_{y} = \int_{x=a}^{x=b} \int_{y=\phi_{1}(x)}^{y=\phi_{2}(x)} -Fy(x,y) \, dy \, dx$$

$$= -\int_{a}^{b} \left[F(x,\phi_{2}(x)) - F(x,\phi_{1}(x)) \right] \, dx$$

$$= -\int_{a}^{b} \left[F(t,\phi_{2}(t)) - F(t,\phi_{1}(t)) \right] \, dt \, (\text{ let } t = x)$$

$$= \int_{a}^{b} \left[F(t,\phi_{1}(t)) - F(t,\phi_{2}(t)) \right] \, dt$$

Conservative Vector Fields

F is continuously differentiable vector field in the plane $\mathbf{F}: \mathbb{R}^2 \to \mathbb{R}^2$ with $\mathbf{F}(x,y) = (F(x,y),G(x,y))$ where F and G are each real-valued functions.

Here curl ${\bf F}$ is a real-valued function G_x-F_y Green's Theorem: $\int_D {\rm curl}\ {\bf F}=\int_\gamma {\bf F}$

Three Important Properties of Vector Fields

- **A**: **F** is **CONSERVATIVE** means $\mathbf{F} = \nabla f$ for some $f : \mathbb{R}^2 \to \mathbb{R}^1$
- **B**: **F** is **IRROTATIONAL** means curl $\mathbf{F} = 0$
- C: **F** is **PATH INDEPENDENT** means $\int_{\gamma_1} \mathbf{F} = \int_{\gamma_2} \mathbf{F}$ for any paths γ_1 and γ_2 from **a** to **b** where **a** and **b** are any points in the plane.

Major Goal: Show THESE PROPERTIES ARE EQUIVALENT

A implies B

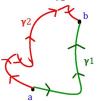
A F is **CONSERVATIVE**means $\mathbf{F} = \nabla f$ for some $f: \mathbb{R}^2 \to \mathbb{R}^1$ **B F** is **IRROTATIONAL** means curl $\mathbf{F} = \mathbf{0}$

Suppose **F** is Conservative Then
$$(F,G) = \mathbf{F} = \nabla f = (f_x,f_y)$$
 so $f_x = F$ and $f_y = G$ Then $G_x = f_{yx}$ and $F_y = f_{xy}$ so curl $\mathbf{F} = G_x - F_y = f_{yx} - f_{xy} = 0$ by equality of mixed partials.

B implies C will follow from Green's Theorem

- **B F** is **IRROTATIONAL** means curl $\mathbf{F} = 0$
- **C F** is **PATH INDEPENDENT** means $\int_{\gamma_1} \mathbf{F} = \int_{\gamma_2} \mathbf{F}$ for any paths γ_1 and γ_2 from **a** to **b** where **a** and **b** are any points in the plane.

Let ${\bf a}$ and ${\bf b}$ are any points in the plane and γ_1 and γ_2 two paths from ${\bf a}$ to ${\bf b}$. Then $-\gamma_1$ runs from ${\bf b}$ to ${\bf a}$



and $\gamma=\gamma_1-\gamma_2$ is a loop that begins and ends at a Let D be= the enclosed region.

By Green's Theorem
$$\int_{\gamma}\mathbf{F}=\int\!\!\int_{D}\,\operatorname{curl}\,\mathbf{F}=\int\!\!\int_{D}0=0$$
 Thus $0=\int_{\gamma}\mathbf{F}=\int_{\gamma_{1}-\gamma_{2}}\mathbf{F}=\int_{\gamma_{1}}\mathbf{F}-\int_{\gamma_{2}}\mathbf{F}$ Hence $\int_{\gamma_{2}}\mathbf{F}=\int_{\gamma_{1}}\mathbf{F}$

C implies A

- **C F** is **PATH INDEPENDENT** means $\int_{\gamma_1} \mathbf{F} = \int_{\gamma_2} \mathbf{F}$ for any paths γ_1 and γ_2 from **a** to **b** where **a** and **b** are any points in the plane.
- **A F** is **CONSERVATIVE** means $\mathbf{F} = \nabla f$ for some $f: \mathbb{R}^2 \to \mathbb{R}^1$

