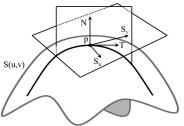
MATH 223: Multivariable Calculus

Differential Geometry of a Surface



Class 29: November 17, 2023

Notes on Assignment 27
Assignment 28
Normal Vectors and Curvature

"Sit and stay were no problem but she's hit a wall with multivariable calculus."

CartoonStock.com

Exam 3: Wednesday Night at 7 PM
You May Bring One Sheet (Two-Sided) of Notes

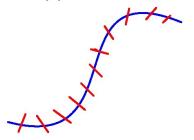
Announcements

Chapter 7: Integrals and Derivatives on Curves

Today: Weighted Curves and Surfaces of Revolution
Conservation of Energy
Normal Vectors and Curvature

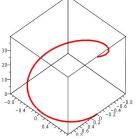
After Thanksgiving: Monday: Flow Lines, Divergence and Curl Wednesday: Conservative Vector Fields

Mass of a Weighted Curve Density (μ) is mass per unit length



Total Mass $\sim \sum \mu(point) \times$ Length of short piece of curve

Total Mass =
$$\int \mu(g(t))|g'(t)| dt$$



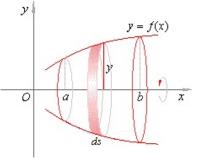
Suppose
$$\mu(x,y,z) = x^2 + y^2 + \sqrt{z} - 1$$

Then $\mu(g(t)) = \mu(\sin t, \cos t, t^2) = \cos^2 + \sin^2 t + \sqrt{t^2} - 1$
 $= 1 + t - 1 = t$
Thus $\operatorname{Mass} = \int_0^{2\pi} t \sqrt{1 + 4t^2} \, dt$
 $= \frac{1}{12} (1 + 4t^2)^{3/2} \Big|_0^{2\pi} = \frac{1}{12} \left[(1 + 16\pi^2)^{3/2} - 1 \right]$

Surface of Revolution

S is a surface in \mathbb{R}^3 obtained by rotating a plane curve about a straight line in the plane.

Simplest Case: Rotate y = f(x) about x-axis.

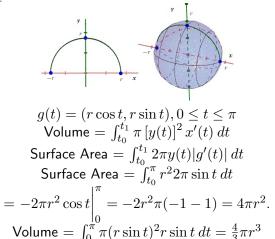


$$\mbox{Volume} = \int_a^b \pi \left[f(x)\right]^2 \, dx$$

$$\mbox{Surface Area} = \int_a^b 2\pi f(x) \sqrt{1+\left[f'(x)\right]^2} \, dx$$

$$\begin{aligned} \text{Volume} &= \int_a^b \pi \left[f(x) \right]^2 \, dx \\ \text{Surface Area} &= \int_a^b 2\pi f(x) \sqrt{1 + \left[f'(x) \right]^2} \, dx \\ \text{Suppose curve has parametrization } g: \mathbb{R}^1 \to \mathbb{R}^2, t_0 \leq t \leq t_1 \\ g(t) &= (x(t), y(t)) \text{ with } g(t_0) = (a, f(a)) \text{ and } g(t_1) = (b, f(b)). \\ \text{Volume} &= \int_{t_0}^{t_1} \pi \left[y(t) \right]^2 x'(t) \, dt \\ \text{Surface Area} &= \int_{t_0}^{t_1} 2\pi y(t) |g'(t)| \, dt \end{aligned}$$

Example Revolve Semicircle of radius r about horizontal axis.



If $\mathbf{F} = \nabla f$ for some f, then we call \mathbf{F} a Conservative Vector Field or an Exact Vector Field

and f is called a **Potential** of **F**

The function $P(\vec{x}) = -f(\vec{x})$ is the **Potential Energy** of the field **F**.

Conservative Vector Field: $\mathbf{F}(x,y) = (2xy,x^2 + 2y)$ Nonconservative Example $\mathbf{F}(x,y) = (x,x+1)$

Application: Conservation of Energy

Suppose g(t) represents the position of an object of varying mass m(t) in space at time t.

The velocity vector of the object is $\mathbf{v} = \mathbf{g}'(t)$. The Force acting on the object at position g(t) is

$$\mathbf{F}(\mathbf{g}(t)) = [m(t)\mathbf{v}(t)]' = m'(t)\mathbf{v}(t) + m(t)\mathbf{v}'(t)$$

Then

$$\mathbf{F}(\mathbf{g}(t)) \cdot \mathbf{g}'(t) = \mathbf{F}(\mathbf{g}(t)) \cdot \mathbf{v}(t)$$

$$= [m'(t)\mathbf{v}(t) + m(t)\mathbf{v}'(t)] \cdot \mathbf{v}(t)$$

$$= m'(t)\mathbf{v}(t) \cdot \mathbf{v}(t) + m(t)\mathbf{v}'(t) \cdot \mathbf{v}(t)$$

$$= m'(t)s^{2}(t) + m(t)s'(t)s(t)$$

where $s(t) = |\mathbf{v}(t)| = \mathbf{speed}$ at time t.

To Show:
$$s'(t)s(t) = \mathbf{v}'(t) \cdot \mathbf{v}(t)$$

Start with
$$s^2(t) = |\mathbf{v}(t)|^2 = \mathbf{v}(t) \cdot \mathbf{v}(t)$$

Differentiate each side with respect to t:

$$2s(t)s'(t) = \mathbf{v}'(t) \cdot \mathbf{v}(t) + \mathbf{v}(t) \cdot \mathbf{v}'(t) = 2\mathbf{v}'(t) \cdot \mathbf{v}(t)$$
 Thus $s'(t)s(t) = \mathbf{v}'(t) \cdot \mathbf{v}(t)$ and

$$\mathbf{F}(\mathbf{g}(t)) \cdot \mathbf{g}'(t) = m'(t)s^2(t) + m(t)s'(t)s(t)$$

Application: Conservation of Energy

(a)
$$\mathbf{F}(\mathbf{g}(t)) \cdot \mathbf{g}'(t) = m'(t)s^2(t) + m(t)s'(t)s(t)$$

We'll use the scalar v for the scalar s
so $\mathbf{F}(\mathbf{g}(t)) \cdot \mathbf{g}'(t) = m'(t)v^2(t) + m(t)v'(t)v(t)$

(b)
$$m(t) = \text{Constant implies } m' = 0$$
 so $\mathbf{F}(g(t)) \cdot g'(t) = mv(t)v'(t)$

$$\int_{a}^{b} mv(t)v'(t) dt = \frac{mv(t)^{2}}{2} \Big|_{t=a}^{t=b}$$

Application: Conservation of Energy

Suppose **F** is a force field which moves an object of mass m from \vec{a} to \vec{b} along curve $\gamma.$

Let g be a parametrization of curve γ and v(t)=g'(t). Then the work done in moving the object is

$$rac{1}{2}m|v(t_b)|^2-rac{1}{2}m|v(t_a)|^2$$
 (Change in Kinetic Energy)

If **F** is a conservative field, then we can also compute work done by $\int_{\gamma} \mathbf{F} = f(\vec{b}) - f(\vec{a}) = p(\vec{a}) - p(\vec{b}) =$ Change in Potential Energy Equating the two expressions for work, we have

$$\frac{1}{2}m|v(t_b)|^2 - \frac{1}{2}m|v(t_a)|^2 = p(\vec{a}) - p(\vec{b})$$
$$p(\vec{b}) + \frac{1}{2}m|v(t_b)|^2 = p(\vec{a}) + \frac{1}{2}m|v(t_a)|^2$$

where \vec{a} and \vec{b} are any 2 points

So Sum of Potential and Kinetic Energy is Constant

Law of Conservation of Total Energy

Normal Vectors and Curvature

Goal: Derive a Measure of Shape of a Curve.

How "Curvy" is a Curve?

Setting: Curve γ lies in \mathbb{R}^2 or \mathbb{R}^3

Parametrization g whose image is γ .

Some texts use \mathbf{r} or $\mathbf{x} = \mathbf{x}(t)$ for the parametrization Arc Length traversed by time t is denoted s(t) and is

a scalar quantity with

$$s(t) = \int |\mathbf{g}'(t)| dt$$

Arc Length is Integral of Speed Speed is Derivative of Arc Length:

$$s'(t) = |\mathbf{g}'(t)|$$

so we will have $\mathbf{g}'(t) = s'(t)\mathbf{T}(t)$

where ${\bf T}$ is unit tangent vector $\frac{{\bf g}'(t)}{|{\bf g}'(t)|}$

Unit Tangent Vector

The unit tangent vector gets its own notation:

$$\vec{\mathbf{T}}(t) = \frac{\vec{\mathbf{r}}'(t)}{\left|\vec{\mathbf{r}}'(t)\right|} = \frac{\vec{\mathbf{v}}}{\left|\vec{\mathbf{v}}\right|}$$

$$\mathbf{T}(t) = \frac{\mathbf{g}'(t)}{|\mathbf{g}'(t)|}$$

Example $g(t) = (a\cos t, a\sin t, bt)$

Then
$$\mathbf{g}'(t) = (-a\sin t, a\cos t, b)$$
 and $|\mathbf{g}'(t)| = \sqrt{a^2 + b^2}$
 $\mathbf{T}(t) = \frac{g'(t)}{|g'(t)|} = \frac{(-a\sin t, a\cos t, b)}{\sqrt{a^2 + b^2}}$
Then $\mathbf{T}' = \frac{(-a\cos t, -a\sin t, 0)}{\sqrt{a^2 + b^2}}$ and $|\mathbf{T}'| = \frac{a}{\sqrt{a^2 + b^2}}$

Then
$$\mathbf{T}' = \frac{(-a\cos t, -a\sin t, 0)}{\sqrt{a^2 + b^2}}$$
 and $|\mathbf{T}'| = \frac{a}{\sqrt{a^2 + b^2}}$

Principal Normal Vector

Start With Observation: $\mathbf{T} \cdot \mathbf{T} = |\mathbf{T}|^2 = 1$ Now differentiate both sides with respect to t:

$$\mathbf{T}' \cdot \mathbf{T} + \mathbf{T} \cdot \mathbf{T}' = 2\mathbf{T} \cdot \mathbf{T}' = 0$$

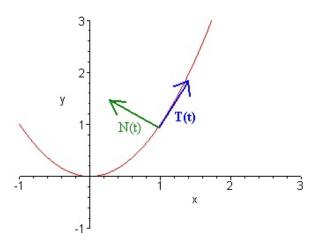
So $\mathbf{T} \cdot \mathbf{T}' = 0$

The vectors $\mathbf T$ and $\mathbf T'$ are Orthogonal

The Principal Normal Vector

$$\eta(t) = \mathbf{N} = \frac{\mathbf{T}'}{|\mathbf{T}'|}$$

Sometimes written as $\mathbf{N} = \frac{\mathbf{T'}}{|\mathbf{T'}|}$ or $\mathbf{n} = \frac{\mathbf{t}}{|\mathbf{t}|}$



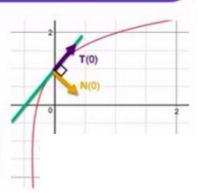
Principal Unit Normal Vector

$$\bullet 0 = 1' = (T \cdot T)'$$

$$= T' \cdot T + T \cdot T'$$

$$= 2T \cdot T'$$

$$\bullet N(t) = \frac{T'(t)}{\|T'(t)\|}$$



Principal Normal

$$\mathbf{N} = \frac{\mathbf{T}'}{|\mathbf{T}'|}$$

$$\underline{\mathsf{Example}} \ \mathbf{g}(t) = (a\cos t, a\sin t, bt)$$
 Then $\mathbf{g}'(t) = (-a\sin t, a\cos t, b)$ and $|\mathbf{g}'(t)| = \sqrt{a^2 + b^2}$
$$\mathbf{T}(t) = \frac{\mathbf{g}'(t)}{|\mathbf{g}'(t)|} = \frac{(-a\sin t, a\cos t, b)}{\sqrt{a^2 + b^2}}$$
 Then $\mathbf{T}' = \frac{(-a\cos t, -a\sin t, 0)}{\sqrt{a^2 + b^2}}$ and $|\mathbf{T}'| = \frac{a}{\sqrt{a^2 + b^2}}$
$$\mathbf{N} = \frac{(-a\cos t, -a\sin t, 0)}{\sqrt{a^2 + b^2}} \times \frac{\sqrt{a^2 + b^2}}{a} = \frac{(-a\cos t, -a\sin t, 0)}{a}$$

$$\mathbf{N} = (-\cos t, -\sin t, 0)$$

$$\mathbf{N} \cdot \mathbf{T} = \frac{a\sin t\cos t - a\sin t\cos t + 0}{\sqrt{a^2 + b^2}} = 0.$$

Example: Parabola in the Plane

$$\mathbf{g}(t) = (t, t^2)$$
$$\mathbf{g}'(t) = (1, 2t)$$
$$|\mathbf{g}'(t)| = \sqrt{1 + 4t^2}$$

$$\begin{split} \mathbf{T} &= \frac{\mathbf{g'}(t)}{|\mathbf{g'}(t)|} = \frac{(1,2t)}{\sqrt{1+4t^2}} = \left((1+4t^2)^{-1/2}, 2t(1+4t^2)^{-1/2} \right) \\ \text{Differentiating with respect to } t \text{ and simplifying, we get} \\ \mathbf{T'} &= \left(\frac{-4t}{(1+4t^2)^{3/2}}, \frac{2}{(1+4t^2)^{3/2}} \right) \\ \text{After some algebra, } |\mathbf{T'}| &= \frac{2}{1+4t^2} \\ \mathbf{N} &= \left(\frac{-2t}{\sqrt{1+4t^2}}, \frac{1}{\sqrt{1+4t^2}}, \right) \end{split}$$

Check that $\mathbf{N} \cdot \mathbf{T} = 0$

Curvature

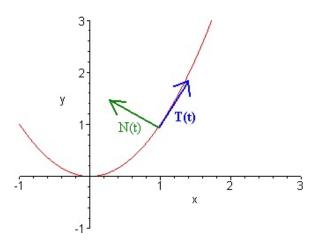
Recall
$$s'(t) = |\mathbf{g}'(t)|$$
 or, more compactly, $s' = |\mathbf{g}'|$ and $\mathbf{T} = \frac{\mathbf{g}'}{|\mathbf{g}'|} = \frac{\mathbf{g}'}{s'}$ we have $\mathbf{g}' = s'\mathbf{T}$.

Differentiate with respect to t :
$$\mathbf{g}'' = \mathbf{g}'' = (s'\mathbf{T})' = s''\mathbf{T} + s'\mathbf{T}'$$

$$\mathbf{g}'' = s''\mathbf{T} + s'\mathbf{T}'$$
acceleration component component vector in direction in direction of \mathbf{T} of \mathbf{T}'

Replace \mathbf{T}' by $|\mathbf{T}'|\mathbf{N}$:

$$\mathbf{g''}$$
 = $s''\mathbf{T}$ + $s'|\mathbf{T'}|\mathbf{N}$ acceleration tangential centripetal vector acceleration acceleration



Curvature

$$\mathbf{g''} = s''\mathbf{T} + s'|\mathbf{T'}|\mathbf{N}$$
 acceleration tangential centripetal vector acceleration acceleration
Curvature is a measure of the bend
$$\kappa(t) = \left|\frac{d\mathbf{T}}{ds}\right|$$

$$\underline{\mathbf{Theorem:}} \ \kappa = \frac{|\mathbf{T'}|}{s'} = \frac{|\mathbf{T'}|}{|\mathbf{g'}(t)|}.$$
 Proof:
$$\frac{d\mathbf{T}}{ds} = \frac{d\mathbf{T}}{dt} \frac{dt}{ds} = \frac{\mathbf{T'}}{s'}$$

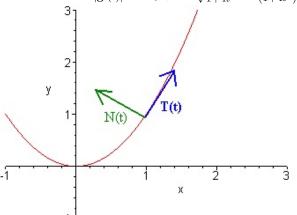
$$\kappa = \frac{|\mathbf{T}'|}{|\mathbf{g}'(t)|}$$

Curvature:
$$\kappa = \frac{|\mathbf{T}'|}{|\mathbf{g}'(t)|}$$
 ole Our Parabola $\mathbf{g}(t) =$

Example Our Parabola $\mathbf{g}(t) = (t, t^2)$

We found
$$|\mathbf{T}'|=\frac{2}{1+4t^2}$$
 and $|\mathbf{g}'(t)|=\sqrt{1+4t^2}$

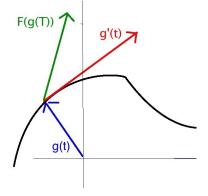
Thus Curvature =
$$\frac{|\mathbf{T}'|}{|\mathbf{g}'(t)|} = \frac{2}{1+4t^2} \times \frac{1}{\sqrt{1+4t^2}} = \frac{2}{(1+4t^2)^{3/2}}$$



Flow Lines

Suppose γ is a curve in \mathbb{R}^n which has a parametrization g. At each point on the curve, we can associate two vectors:

Tangent Vector: $\mathbf{g'}(t)$ Vector Field: $\mathbf{F}(\mathbf{g}(t))$



If the two vectors coincide, then γ is called a **flow line** for **F**.

Hard Problem: Given **F**, find flow lines (Central Question in Differential Equations)

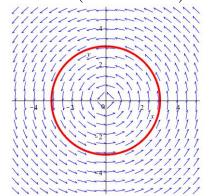
Easy Problem: Given \mathbf{g} and \mathbf{F} , check if γ is a flow line for \mathbf{F} .

Example:
$$\mathbf{g}(t) = (3\cos\frac{t}{12}, 3\sin\frac{t}{12})$$

Then
$$\mathbf{g'}(t) = (-\frac{1}{4}\sin\frac{t}{12}, \frac{1}{4}\cos\frac{t}{12})$$

Suppose
$$\mathbf{F}(x,y) = \left(\frac{-y}{4\sqrt{x^2+y^2}}, \frac{x}{4\sqrt{x^2+y^2}}\right)$$

Then
$$\mathbf{F}(x,y)=\left(\frac{-3\sin\frac{t}{12}}{4\times 3},\frac{3\cos\frac{t}{12}}{4\times 3}\right)=\mathbf{g'}(t)$$



Flow Lines and Differential Equations

Star with a system of differential equations

$$\frac{dx}{dt} = (2 - y)(x - y) = f(x, y)$$
$$\frac{dy}{dt} = (1 + x)(x + y) = g(x, y)$$

Can write as a single equation:
$$\frac{dy}{dx} = \frac{(1+x)(x-y)}{(2-y)(x-y)} = \frac{g(x,y)}{f(x,y)}$$
Observe:

- 1. Solution of the equation is a curve in the (x, y)-plane
- 2. As time goes forward, point moves along the curve in accordance to the equation
- 3. $\mathbf{F}(x,y) = (f(x,y), g(x,y))$ is a vector field.
- 4. At each point on curve, direction of motion is given by the vector field
- 5. The vector field is tangent to the curve
- 6. The curve is tangent to the vector field

<u>Definition</u>: A **flow line** of a vector field \mathbf{F} is a differentiable function \mathbf{g} such that the velocity vector \mathbf{g} at each point coincides with the field vector $\mathbf{F}(\mathbf{g})$.

