MATH 223: Multivariable Calculus

Class 26: November 10, 2023

Notes on Assignment 24 (Can Turn in on Monday) Assignment 25 (For Monday) Improper Integrals and Probability Density Functions

Progress Report on Location Problem: Due By Friday, November 17

Should Have Explicit Function To Minimize With Full Rationale

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Announcements

This Week: Properties of Integral Leibniz Rule Change of Variable Improper Integrals Application to Probability

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

In computing mutiliple integrals, the corresponding change in the region may be more complicated.

By a **change of variable**, we will mean a vector function T from \mathbb{R}^n to \mathbb{R}^n . It is convenient to use different letters to denote the spaces; e.g., $T : \mathbb{U}^n \to \mathbb{R}^n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Jacobi's Theorem

Let \mathcal{R} be a set in \mathbb{U}^n and $T(\mathcal{R})$ its image under T; that is, $T(\mathcal{R}) = \{T(\vec{u}) : \vec{u} \text{ is in } \mathcal{R}\}$ Suppose $f : \mathbb{R}^n \to \mathbb{R}^1$ is a real-valued function. Then, under suitable conditions,

$$\int_{\mathcal{T}(\mathcal{R})} f(\vec{x}) dV_{\vec{x}} = \int_{\mathcal{R}} f(\mathcal{T}(\vec{u})) |det\mathcal{T}'(\vec{u})| dV_{\vec{u}}$$

- T is continuous differentiable
- Boundary of R is finitely many smooth curves
- T is one-to-one on interior of \mathcal{R}
- The Jacobian Determinant det T' is non zero on interior of \mathcal{R} .
- The function f is bounded and continuous on $T(\mathcal{R})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Example: Spherical Coordinates

$$\begin{aligned} x &= r \sin \phi \cos \theta \quad T : (r, \phi, \theta) \to (x, y, z) \\ y &= r \sin \phi \sin \theta \qquad \text{det } T' = r^2 \sin \phi \\ z &= r \cos \phi \\ \hline \frac{\text{Problem}:}{\text{Evaluate } \int \int_C \sqrt{x^2 + y^2 + z^2} dV \\ \text{where } C \text{ is the ice cream cone} \\ \{(x, y, z) : x^2 + y^2 + z^2 \leq 1, x^2 + y^2 \leq \frac{z^2}{3}, z \geq 0\} \\ z \geq 0 \text{ implies } \phi \leq \frac{\pi}{2} \\ x^2 + y^2 + z^2 \leq 1 \text{ implies } r \leq 1 \\ x^2 + y^2 \leq \frac{z^2}{3} \text{ implies } r^2 \sin^2 \phi \leq \frac{r^2 \cos^2 \phi}{3} \\ \text{implies } \tan^2 \phi \leq \frac{1}{3} \text{ implies } \phi \leq \frac{\pi}{6} \end{aligned}$$

$$\int_{\theta=0}^{2\pi} \int_{\phi=0}^{\pi/6} \int_{r=0}^{1} \sqrt{r^2} r^2 \sin \phi \, dr \, d\phi \, d\theta$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

<u>Example</u>: Evaluate $\iiint_D z^2 dV$ where *D* is the interior of the ellipsoid $\frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} = 1$

STEP 1: Let $u = \frac{x}{2}, v = \frac{y}{4}, w = \frac{z}{3}$. Equation of the ellipsoid becomes $u^2 + v^2 + w^2 = 1$ (unit sphere) So x = 2u, y = 4v, z = 3w gives T(u, v, w) = (2u, 4v, 3w) and $T' = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ so det $T' = 2 \times 4 \times 3 = 24$ Thus $\iiint_D z^2 = \iiint(3w)^2(24) du dv dw = 216 \iiint w^2 du dv dw$

STEP 2: Switch to Spherical Coordinates:

$$u = r \sin \phi \cos \theta, v = r \sin \phi \sin \theta, w = r \cos \phi$$

216 $\iiint w^2 \, du \, dv \, dw = 216 \iiint (r \cos \phi)^2 r^2 \sin \phi \, dr \, d\phi \, d\theta$
 $= 216 \int_{\theta=0}^{2\pi} \int_{\phi=0}^{\pi} \int_{r=0}^{1} r^4 \cos^2 \phi \sin \phi \, dr \, d\phi \, d\theta$
 $= (216)(2\pi) \int_{\phi=0}^{\pi} \int_{r=0}^{1} r^4 \cos^2 \phi \sin \phi \, dr \, d\phi$
 $= (216)(2\pi) \frac{1}{5} \int_{\phi=0}^{\pi} \cos^2 \phi \sin \phi \, d\phi$
 $= \frac{(216)(2\pi)}{5} \left[-\frac{\cos^3 \phi}{3} \right]_{\phi=0}^{\pi} = \frac{(216)(2\pi)}{5} \frac{2}{3} = \frac{288\pi}{5}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

$$\int_{-1}^{\infty} \int_{1}^{2} f(x, y) \, dy \, dx = \lim_{b \to \infty} \int_{-1}^{b} \int_{1}^{2} f(x, y) \, dy \, dx$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

$$I = \lim_{a \to 0^+} \int_a^1 \frac{1}{\sqrt{x}} \, dx = \lim_{a \to 0^+} \left[2\sqrt{x} \right]_a^1 = \lim_{a \to 0^+} \left[2 - 2\sqrt{a} \right] = 2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

$$=\lim_{a\to 0^+}(2\pi-2\pi a)=2\pi$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Improper Integrals

Let $\{B_{\delta}\}$ be a family of bounded sets B_{δ} that expands to cover all of the set B. We say $\int_{B} f(\mathbf{x}) dV$ is defined as an **improper integral** if the limit $\int_{B} f(\mathbf{x}) dV = \lim_{B_{\delta}} \int_{B_{\delta}} f(\mathbf{x}) dV$ is finite and independent of the family $\{B_{\delta}\}$ used to define it. If the limit exists (as a finite number), we say that the improper integral **converges** to that value. If the limit fails to exist, we say the improper integral **diverges**.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An Important Example: Exponential Probability Density Function

$$\int_{0}^{\infty} e^{-x} dx = \lim_{b \to \infty} \int_{0}^{b} e^{-x} dx = \lim_{b \to \infty} \left[-e^{-x} \Big|_{x=0}^{b} \right]$$
$$= \lim_{b \to \infty} \left[-e^{-b} - (-e^{0}) \right] = \lim_{b \to \infty} \left[1 - \frac{1}{e^{b}} \right] = 1$$

Х	$\int_0^{\infty} e^{-t} dt$	Prob(Bulb Lasts More than x months)		
1	.632	.368		
2	.865	.135		
3	.950	.050		
4	.982	.018	王	Эс

Evaluate
$$1 - \int_{x=0}^{3} \int_{y=0}^{3-x} e^{-x} e^{-y} \, dy \, dx$$

$$= 1 - \int_{0}^{3} e^{-x} \left[-e^{-y} \Big|_{y=0}^{3-x} \right] \, dx$$

$$= 1 - \int_{0}^{3} e^{-x} \left[-e^{3-x} + 1 \right] \, dx$$

$$= 1 - \int_{0}^{3} (e^{-x} - e^{-3}) \, dx$$

$$= 1 - \left[-e^{-x} - e^{-3}x \right]_{x=0}^{3}$$

$$= 1 - \left[-e^{-3} - 3e^{-3} + 1 + 0 \right] = 1 - \left[1 - \frac{4}{e^3} \right] = \frac{4}{e^3} \approx .199$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Probability Density Function

A real-valued function p such that $p(\vec{x}) \ge 0$ for all \vec{x} and $\int_{S} p = 1$ where S is the set of all possibilities.

A D N A 目 N A E N A E N A B N A C N

Example 2: p(x) = 2 - 2x on [0,1] More likely to choose small numbers than larger numbers Problem: Find the probability of picking a number less than 1/2. $\int_0^{1/2} (2-2x) \, dx = (2x-x^2) \Big|_0^{1/2} = (1-\frac{1}{4}) - (0-0) = \frac{3}{4}$ A probability density function on a set S in \mathbb{R}^n is a continuous non-negative real-valued function $p:S \to \mathbb{R}^1$ such that $\int_{c} p dV = 1$ If an experiment is performed where S is the set of all possible outcomes, then the probability that the outcome lies in a particular

subset T is $\int_T p(\vec{x}) dV$.

A D N A 目 N A E N A E N A B N A C N

Need to find
$$A = \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx$$

$$A^{2} = \left(\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} dx\right) \left(\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} dx\right)$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{\frac{-x^{2}-y^{2}}{2}} dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^{2}+y^{2}}{2}} dy dx$$

Switch To Polar Coordinates:
$$A^2 = \int_{r=0}^{\infty} \int_{\theta=0}^{2\pi} e^{-\frac{r^2}{2}} r \, d\theta \, dr$$

$$A^{2} = 2\pi \int_{r=0}^{\infty} r e^{-\frac{r^{2}}{2}} dr = 2\pi \lim_{b \to \infty} \int_{r=0}^{b} r e^{-\frac{r^{2}}{2}} dr$$

$$= 2\pi \lim_{b \to \infty} \left[-e^{-\frac{r^2}{2}} \right]_0^b = 2\pi \lim_{b \to \infty} \left[-\frac{1}{e^{b^2/2}} + \frac{1}{e^0} \right] = 2\pi \times 1 = 2\pi$$

Thus $A^2 = 2\pi$ so $A = \sqrt{2\pi}$

$$\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}$$

To get a probability density, let $p(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ This density is called the **Standard Normal Density**

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example: Suppose two numbers b and c are chosen at random between 0 and 1. What is the probability that the quadratic equation $x^2 + bx + c = 0$ has a real root? Solution: Choosing b and c is equivalent to choosing a point (b, c)from the unit square S with $p(\vec{x}) = 1$ (Uniform Density) Then $\int_{S} p(\vec{x}) = \int_{S} 1 = area(S) = 1$. Now $x^2 + bx + c = 0$ has solution $x = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$ For real root, need $b^2 - 4c \ge 0$ or $c \le \frac{b^2}{4}$ Let $T = \{(b, c) : c \leq \frac{b^2}{4}\}$ $\int_{T} p(\vec{x}) = \int_{x=0}^{1} \int_{y=0}^{x^{2}/4} 1 \, dy \, dx = \int_{x=0}^{1} \frac{x^{2}}{4} \, dx = \frac{x^{3}}{12} \Big|_{1}^{1} = \frac{1}{12}$ y 0.5 S 0.5 0.5 x ・ロト ・ 聞 ト ・ 回 ト ・ 回 ・ うらる

General Exponential Probability Distribution

$$p(x) = \lambda e^{-\lambda x}$$
 for $x \ge 0, \lambda > 0$
Easy to Show:

$$\int_0^\infty \lambda e^{-\lambda x} \, dx = 1 \text{ so it is a probability distribution}$$

Mean
$$\int_0^\infty \lambda x e^{-\lambda x} dx = \frac{1}{\lambda}$$

 $\begin{array}{l} \mathsf{Prob}(\mathsf{Bulb\ life} \geq 3) = 1 - \int_3^\infty \lambda e^{-\lambda x} dx = 1 + e^{-\lambda x} \bigg|_3^\infty = 1 - e^{-3\lambda} \\ \mathsf{Prob}(2 \text{ lights\ have\ life} \geq 3) = e^{-3\lambda} (1 + 3\lambda) \\ \mathsf{More\ than\ } b \text{ hours:\ } e^{-3b\lambda} (1 + b\lambda) \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○