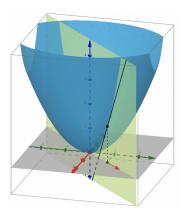
MATH 223: Multivariable Calculus



Class 12: October 6, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Notes on Assignment 10
- Assignment 11
- Notes on Exam 1

Exam Results Median: 90 Average: 87

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Today

Partial With Respect to a Vector Directional Derivative

<u>Definition</u>: A real-valued function f is differentiable at a point **a** means there is a 1 by n matrix **m** such that

$$\lim_{|\mathbf{h}|\to 0} \frac{f(\mathbf{a}+\mathbf{h}) - f(\mathbf{a}) - m\mathbf{h}}{|\mathbf{h}|} = 0$$

Theorem 4.2.1: If f is a real-valued function differentiable at a

point, then **m** is the vector of first order partial derivatives evaluated at that point.

Theorem 4..2.2: If f has continuous first order partial derivatives at a point, then f is differentiable at that point.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Partial With Respect to a Vector

Let $f(x, y) = x^2 y$ and $\mathbf{a} = (3, 9)$ so f(3, 9) = 81. Find the partial derivative of f at (3,9) if we approach (3,9) along arbitrary vector $\mathbf{v} = (v_1, v_2)$.

We want
$$f_{\mathbf{v}}(\mathbf{a}) = \lim_{t \to 0} \frac{f(\mathbf{a} + t\mathbf{v}) - f(\mathbf{a})}{t}$$

$$f_{\mathbf{v}}(\mathbf{a}) = \lim_{t \to 0} \frac{f(3 + tv_1, 9 + tv_2) - f(3, 9)}{t}$$

$$= \lim_{t \to 0} \frac{(3 + tv_1)^2(9 + tv_2) - (3^2)(9)}{t}$$

$$= \lim_{t \to 0} \frac{(3^2 + 6tv_1 + t^2v_1^2)(9 + tv_2) - (3^2099)}{t}$$

$$= \lim_{t \to 0} \frac{(3^2)(9) + 3^2tv_2 + 6tv_1(9) + 6t^2v_1v_2 + t^2v_1^2(9) + t^3v_1^2v_2 - (3^2v_1 + 54v_1 + 6tv_1v_2 + tv_1^2(9) + t^2v_1^2v_2)}{t}$$

$$= 9v_2 + 54v_1 = 54v_1 + 9v_2$$

Let $f(x, y) = x^2 y$ and $\mathbf{a} = (3, 9)$ so f(3, 9) = 81. Find the partial derivative of f at (3,9) if we approach (3,9) along arbitrary vector $\mathbf{v} = (v_1, v_2)$.

$$f_{\mathbf{v}}(\mathbf{a}) = 54v_1 + 9v_2 = (54, 9) \cdot (v_1, v_2)$$

Note

 $f_x(x,y) = 2xy$ and $f_y(x,y) = x^2$ so $f_x(3,9) = 54$, $f_y(3,9) = 9$ Thus

$$f_{\mathbf{v}}(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{v}$$

(In This Case At Least)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem: If $f : \mathcal{R}^n \to \mathcal{R}^1$ is differentiable at \mathbf{a} , then $f_{\mathbf{v}}(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{v}$

Proof of Theorem:

(Case 1): $\mathbf{v} = \mathbf{0}$: Both sides are 0. (Case 2): $\mathbf{v} \neq \mathbf{0}$: Note: $|\mathbf{v}| \neq 0$ so we can divide by $|\mathbf{v}|$ if necessary. By differentiability of f at \mathbf{a} , we have

$$\lim_{\mathbf{x}\to\mathbf{a}}\frac{f(\mathbf{x})-f(\mathbf{a})-\nabla f(\mathbf{a})\cdot(\mathbf{x}-\mathbf{a})}{|\mathbf{x}-\mathbf{a}|}=0$$

Set $\mathbf{x} = \mathbf{a} + t\mathbf{v}$ so $\mathbf{x} \to \mathbf{a}$ is equivalent to $t \to 0$ and $\mathbf{x} - \mathbf{a} = t\mathbf{v}$ We have

$$\lim_{t\to 0} \frac{f(\mathbf{a}+t\mathbf{v})-f(\mathbf{a})-\nabla f(\mathbf{a})\cdot t\mathbf{v}}{|t\mathbf{v}|} = 0$$

$$\lim_{t \to 0} \frac{f(\mathbf{a} + t\mathbf{v}) - f(\mathbf{a}) - \nabla f(\mathbf{a}) \cdot t\mathbf{v}}{|t\mathbf{v}|} = 0$$
Now $|t\mathbf{v}| = |t||\mathbf{v}|$
Can take $t > 0$ (Why?). So $|t\mathbf{v}| = t|\mathbf{v}|$
We can write limit as
$$\lim_{t \to 0} \left[\frac{f(\mathbf{a} + t\mathbf{v}) - f(\mathbf{a})}{t|\mathbf{v}|} - \frac{t\nabla f(\mathbf{a}) \cdot \mathbf{v}}{t|\mathbf{v}|} \right] = 0$$

Factor out t from second term and multiply both sides by the nonzero scalar $|\mathbf{v}|$ t to obtain

$$\lim_{t\to 0} \left[\frac{f(\mathbf{a}+t\mathbf{v})-f(\mathbf{a})}{t} - \nabla f(\mathbf{a}) \cdot \mathbf{v} \right] = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\lim_{t \to 0} \left[\frac{f(\mathbf{a} + t\mathbf{v}) - f(\mathbf{a})}{t} - \nabla f(\mathbf{a}) \cdot \mathbf{v} \right] = 0$$

implies
$$\lim_{t \to 0} \left[\frac{f(\mathbf{a} + t\mathbf{v}) - f(\mathbf{a})}{t} \right] = \nabla f(\mathbf{a}) \cdot \mathbf{v}$$

But the left hand side is, by definition $f_{v}(\mathbf{a})$

Directional Derivative

Let $f(x, y) = x^2 y$ and $\mathbf{a} = (3, 9)$ so f(3, 9) = 81. Find the directional derivative of f at (3,9) in the direction of the vector $\mathbf{v} = (v_1, v_2)$.

Recall
$$f_{\mathbf{v}}(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{v}$$

But $\mathbf{w} = 2\mathbf{v}$ points in the same direction as \mathbf{v} . However

$$f_{\mathbf{w}}(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{w} = 2 \nabla f(\mathbf{a}) \cdot \mathbf{v} = 2 f_{\mathbf{v}}(\mathbf{a})$$

We want a rate of change that depends only on **DIRECTION** Idea: Choose a **unit vector u** in that direction that has length 1; that is

$$\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|}$$

Directional Derivative Let $f(x, y) = x^2 y$ and $\mathbf{a} = (3, 9)$ Find the directional derivative of f at (3,9) in the direction of the vector $\mathbf{v} = (v_1, v_2)$.

The Directional Derivative is
$$\nabla f(\mathbf{a}) \cdot \frac{\mathbf{v}}{|\mathbf{v}|}$$
 where $|\mathbf{v}| = \sqrt{v_1^2 + v_2^2}$

Normalizing a Vector: <u>Example</u> $\mathbf{v} = (3,5)$. The $|\mathbf{v}| = \sqrt{3^2 + 5^2} = \sqrt{34}$. The unit vector is

$$\mathbf{u} = \left(\frac{3}{\sqrt{34}}, \frac{5}{\sqrt{34}}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Rate of Change in Direction **u** is

$$abla f(\mathbf{a}) \cdot \mathbf{u} = |
abla f(\mathbf{a})| |\mathbf{u}| \cos \theta = |
abla f(\mathbf{a})| \cos \theta$$

since $|\mathbf{u}| = 1$.

Maximum rate of change occurs when $\cos \theta = 1$; that is $\theta = 0$ so pick **u** in the direction of the gradient.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ