
The local Gauss - Bonnet Theorem
--

Thy ( local Gauss - Bonnet)
[

suppose R is completely
contained in image ILU)
of a chart.

Sps R is a simply - connected region in a regular

surface S bounded by a simple , closed , piecewise regular

curve I which has positive orientation relative to R .

let a- Ito) , . - - ,
I Hn) be the vertices of I, with

exterior angles O_O , Oi , . . . . On .
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Sps I is a geodyi triangle on a surface s.
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The interior angles ⑤i are givin by

Since arcs of I are geodesics , f!
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ie . angle sum = IT t
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l. for a plane , sum of interior angles of a triangle is
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z. For a unit sphere , sum of interior angles of a triangle

is and angle excess given by Dwayne =
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↳ ie. amount greater than it
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3 . For a pseudosphere , sum of interior angles of a triangle

is and angle defect is given by If =

-

triangle
↳ ie amount less than IT

HILDA
angle defect

0

IT
.

I

> it
FIA

area triangle

41 -- Hg
8 9. angle defect

angle sum = IT + Iz

- I

←
K

<IT - Ida - lareatnaiyle)


