Gauss' Theorema Egregium

Theorem: Gaussian curvature K depends only on the first fundamental form coefficients E, F, G. Theorema Egregium Corollary : If $q: S_1 \rightarrow S_2$ is a local isometry, then $K_p = K_{\varphi(p)}$ C follows from fact that if y a local isometry and (\bar{x}, u) is a chart about \bar{p} , then $(\varphi \cdot \bar{x}, u)$ is a chart about $\varphi(\overline{p})$ and in this case $E_{\bar{x}}(u,v) = E_{\varphi,\bar{x}}(u,v)$ $F_{\overline{x}}(u,v) = F_{\overline{y},\overline{x}}(u,v)$

Steps to prove the orem!

$$A_{2}^{m}$$
 . Show Γ_{ij}^{k} depend only on $E_{i}F_{i}G$
 P 2. Show K depends only on Γ_{ij}^{k} 's and $E_{i}F_{i}G$.
We'll
statut this