Since normal curvature depends on direction but not
specific curve, suffices to consider normal sections
of the surface through
$$\overline{p}$$
.
Given unit vector $\overline{w} \in \overline{t_p} S$, let C be the curve obtained
by intersecting S w/ plane determined by Np and \overline{w} .
C is called the normal section of S defined by \overline{w} .
Note: If $C = \overline{a}(s)$ p.b.a.l., with $\overline{a}(0) = \overline{p}$, then
 $\overline{a}'(0) = \overline{w}$ and $\overline{n}(0) = \pm Np$ (b/c C a
So $|IT_p(\overline{w})| = |Y_n| = \chi$ = curvature output of the curve of th

Recall:
$$dN_p$$
 is self-adjoint so there is an dN_B
 $\xi \bar{\epsilon}_1, \bar{\epsilon}_2$ ζ of eigenvectors of dN_p and
neg. eigenvalues are me_t/min values of
 $-(dN_p(\bar{w}) \cdot \bar{w})_p = II_r(\bar{w})$ where \bar{w} a unit vector.
Thormal curvature
Ex. cylinder (outward N)
 $K_r = 0$
 $e_1 - K_r = 1$ smallest
 $e_1 - K_r = 1$ smallest

