~ keep Ips in mind. Sps. V is 2-diml. 2- 1/m 1 1. Sps. A: V is self-adjoint. Then A has 2 real (possibly equal) eigenvalues $(A \overline{v} = \lambda \overline{v})$ and V has an orthonormal basis eigenvalue eigenvector and V has an orthonormal basis of eigenvectors of A. ~ follows from fact that if y: V J V is s. R. and A is a matrix of p relative to an ie. arthonormal basic, then A is symmetric, Ie. AT=A. 2. If eigenvalues are equal, all rectors in V are eigenvectors, so any orthonormal pair is an ONB. If eigenvalues $\lambda_1 \neq \lambda_2$ we have an ONB $\overline{\xi}\overline{e_1},\overline{e_2}$ with $A\bar{e}_1 = \lambda_1 \bar{e}_1$ and $A\bar{e}_2 = \lambda_2 \bar{e}_2$.

3. Restrict A to unit length vectors in
$$\vee$$
 and
consider the function
 $\overline{\nu} \mapsto \langle A\overline{\nu}, \overline{\nu} \rangle$
 $\overline{\nu} \mapsto \langle A\overline{\nu}, \overline{\nu} \rangle$ has
 $\overline{\nu} \mapsto \langle A\overline{\nu}, \overline{\nu} \rangle$ is a unit vector, $\nu = \cos \theta\overline{e}_{1} + \sin \theta\overline{e}_{2}$
 $\overline{\nu} \mapsto \langle A\overline{\nu}, \overline{\nu} \rangle = \langle \cos \theta Ae_{1} + \sin \theta A\overline{e}_{2} , \cos \theta\overline{e}_{1} + \sin \theta\overline{e}_{2} \rangle$
 $\overline{\nu} \mapsto \langle A\overline{\nu}, \overline{\nu} \rangle = \langle A\overline{\nu}, \overline{\nu} \rangle$
 $\overline{\nu} \mapsto \langle A\overline{\nu}, \overline{\nu} \rangle$
 $\overline{\nu} \mapsto \langle A\overline{\nu}, \overline{\nu} \rangle = \langle A\overline{\nu}, \overline{\nu} \rangle$
 $\overline{\nu} \mapsto \langle A\overline{\nu}, \overline{\nu} \rangle$