
Isometries and local
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: 3 levels of structure to surfaces :

• topological (open sets)

• differential (charts)

• geometric ( first fundamental form/inner product)
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Now that we have defined dfp : Tps , →Tf S2 , we

can consider the structure .

t

Defy A diffeomorphism f :S. - Sz is an isometry rt

for all p ES , and pairs Jiwttps , ,

( i. in ) =

P
T e

( Equivalently :

In this case
,
we say S

, and Sz are isometric

Deth indicates that S
,
and Sz are
-

same from point
of view of- structure

.

S
, Sa

geometric

( dfptv) - dtplw))µp,
dot product dot producteval atp

evalatflp) .
Iplo ) -- Ifqgldfpcv'D .)

-

globally
geometric



EI If S
,
arrives at Sz in 1h23 by a rigid motion
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Big idea : since an isometry f preserves the first
fundamental form it preserves all measurements

defined via first fundamental form
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e.g :

(
we'll see :

rotations
and translations
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distance btw pts .
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