EX. Surfaces defined by equations.
Define For a diffule map
$$f: \mathbb{R}^{n} \to \mathbb{R}^{m}$$
 with $n \ge m$, we say
 $\overline{p} \in \mathbb{R}^{n}$ is a critical pt of \overline{f} rf
dfp is unit ants.
(i.e. dfp hoses not have full rank.
The image $f(\overline{p})$ is called a critical value.
Any point \overline{g} in the image of \overline{f} that is not
a critical value is called a regular value.
 $\overline{Ex} f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ $f(x, y, z) = x^{2} + y^{2} + z^{2}$ $\overline{p} = (x_{0}, y_{0}, z)$
df
 $(x_{0}, y_{0}, \overline{z}_{0})$
 $\sum_{(x_{0}, y_{0}, \overline{z}_{0})}$
 $\sum_{(x_{0}, y_{0}, \overline{z}_{0})}$

Since LT dfy maps to IR, there are two options:

$$\cdot image of df_y$$
 is all of tR mark = 1
 $\cdot image is 0$ for rank = 0
For $df_{(x_0, y_0, \overline{z}_0)} = [2x_0 \quad 2y_0 \quad 2\overline{z}_0]$.
 $image is 0$ when $2x_0 = 2y_0 = 2\overline{z}_0 = 0$, i.e. $(0,0,0)$
 $(x_0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2 \pm 0^2 \pm 0^2 = 0$
 $f(0, 0, 0) = 0^2 + 0^2 \pm 0^2$

Then If
$$f: R^3 \rightarrow R$$
 is a diffible map and a is a
regular value in the mays of f , then
 $f^{-1}(a) = \{(x, y, z) \mid f(x, y, z) = a\}$
is a regular surface in R^3
 a regular surface in R^3
 $f^{-1}(a) = x^2 + y^2 + z^2$ $a = 1$
 $f^{-1}(a) = x^2 + y^2 + z^2$ $a = 1$
 $f^{-1}(a) = (f^{-1}(z)) = (x, y, z) = x^2 + y^2 + z^2 = 1\}$
Then says this is a
regular surface.
Remarks:
 $regular surface.$
2. No need to find atlas of charts. Guaranteed by
proof of then.
3. The proof depends on the Inverse Function then.

Thm (Inverse F.T.) same Let F: (U - IR") - IR" be a diffible mapping and suppose that for $\overline{p} \in U$, $dF_{\overline{p}}: IR^n \to IR^n$ has rank n (so dEp is 1-1 and onto). Then there is an open set VCU about \$\over \$ and un open set WCIR" about F(p) such that F:V-W has a diffile movener F-1:W-V.

Idea! dty is a linear approx. of F. If dFy is I-L and outo then near F, so is F (and F⁻¹ is difficult).