Math 335: Differential Geometry Homework 6 (due October 30)

- 1. Let $f: S \to \mathbb{R}$ be given by $f(\bar{p}) = |p p_0|^2$, where $\bar{p} \in S$ and \bar{p}_0 is a fixed point of \mathbb{R}^3 not in S. Show that $df_{\bar{p}}(\bar{w}) = 2\bar{w} \cdot (\bar{p} \bar{p}_0)$, for all $\bar{w} \in T_{\bar{p}}S$.
- 2. (Gradient on surfaces.) The gradient of a differentiable function $f: S \to \mathbb{R}$ is a differentiable map grad $f: S \to \mathbb{R}^3$ which assigns to each point $\bar{p} \in S$ a vector grad $f(\bar{p}) \in T_{\bar{p}}S \subset \mathbb{R}^3$ such that

$$\operatorname{grad} f(\bar{p}) \cdot v = df_{\bar{p}}(\bar{v}) \quad \text{for all } \bar{v} \in T_{\bar{p}}S.$$

Show that if E, F, and G are the coefficients of the first fundamental form in a parametrization $\bar{x}: U \subset \mathbb{R}^2 \to S$, then grad f on $\bar{x}(U)$ is given by

$$\operatorname{grad} f = \frac{f_u G - f_v F}{EG - F^2} \bar{x}_u + \frac{f_v E - f_u F}{EG - F^2} \bar{x}_v,$$

where f_u denotes $\frac{\partial (f \circ \bar{x})}{\partial u}$ and f_v denotes $\frac{\partial (f \circ \bar{x})}{\partial v}$.

(Note that if $S = \mathbb{R}^2$, with chart $\bar{x}(x,y) = (x,y,0)$, then $\operatorname{grad} f = f_x \bar{e}_1 + f_y \bar{e}_2$, where $\{\bar{e}_1, \bar{e}_2\}$ is the standard basis. Thus the definition agrees with the definition of gradient that we learned in multivariable calculus.)

3. (Chain Rule.) Show that if $\phi: S_1 \to S_2$ and $\psi: S_2 \to S_3$ are differentiable maps and $\bar{p} \in S_1$, then

$$d(\psi \circ \phi)_{\bar{p}} = d\psi_{\phi(\bar{p})} \circ d\phi_{\bar{p}}.$$

- 4. Show that a diffeomorphism $\phi: S_1 \to S_2$ is an isometry if and only if the arc length of any parametrized curve in S is equal to the arc length of the image of the curve by ϕ .
- 5. A map $G: \mathbb{R}^3 \to \mathbb{R}^3$ is a distance-preserving map if

$$|G(\bar{p}) - G(\bar{q})| = |\bar{p} - \bar{q}| \text{ for all } \bar{p}, \bar{q} \in \mathbb{R}^3.$$

Give an example to show that there are local isometries $\phi : S_1 \to S_2$ which cannot be extended into distance-preserving maps $G : \mathbb{R}^3 \to \mathbb{R}^3$.

6. Let S_1 , S_2 , and S_3 be regular surfaces. Prove that

- (a) If $\phi: S_1 \to S_2$ is an isometry, then $\phi^{-1}: S_2 \to S_1$ is also an isometry.
- (b) If $\phi: S_1 \to S_2$ and $\psi: S_2 \to S_3$ are isometries, then $\psi \circ \phi: S_1 \to S_3$ is an isometry.

For those who have seen abstract algebra: this implies that the set of isometries from a regular surface S to itself forms a group, called the *group of isometries of* S. Here's one way in which abstract algebra shows up in other fields of math!