Math 335: Differential Geometry Homework 5 (due October 16)

- 1. Let $S \subset \mathbb{R}^3$ be a regular surface, and suppose that \bar{p}_0 is a point in \mathbb{R}^3 not contained in S. Let $d: S \to \mathbb{R}$ be given by $d(\bar{p}) = |\bar{p} \bar{p}_0|$; that is d is the distance from \bar{p} to a fixed point \bar{p}_0 not in S. Prove that d is a differentiable function on S.
- 2. Suppose that $f : \mathbb{R}^3 \to \mathbb{R}$ is a differentiable function. Suppose that $S \subset \mathbb{R}^3$ is a regular surface. Show that $f_{|_S}$ (f restricted to S) is a differentiable function from S to \mathbb{R} .
- 3. Let $S_1 \subset \mathbb{R}^3$ be a regular surface and let S_2 denote the *xy*-plane in \mathbb{R}^3 . Here, we are considering S_2 to be a regular surface in \mathbb{R}^3 , given by the set $\{(x, y, z) \in \mathbb{R}^3 | z = 0\}$. Suppose that $\pi : S_1 \to S_2$ is the map which takes each $p \in S$ to its orthogonal projection in S_2 . In other words, if p = (x, y, z), then $\pi(p) = (x, y, 0)$. Is π a differentiable map between surfaces?
- 4. Prove that the definition of a differentiable map between surfaces does not depend on the parametrizations chosen.
- 5. Describe the region of the unit sphere covered by the image of the Gauss map of the following surfaces:
 - (a) Paraboloid $z = x^2 + y^2$.
 - (b) Hyperboloid $x^2 + y^2 z^2 = 1$ (nuclear power plant).

(For this problem, you can start by drawing pictures to figure out the regions, but ultimately, find parametrizations and compute $\bar{N}(\bar{p})$ for points on the surface and argue why your pictures are correct.)

6. Use the definition of a differentiable map between surfaces to show that for a regular surface S, the Gauss map $\bar{N}: S \to S^2$ is differentiable.