Math 335: Differential Geometry Homework 10 (due in class on December 8)

- 1. Let S be a sphere of radius 5, centered at the origin in \mathbb{R}^3 and oriented outward. Suppose that C is the horizontal cross section of S at height 4, parametrized by $\bar{\alpha}(t) = (3\cos t, 3\sin t, 4)$. Consider the point $\bar{p} = \bar{\alpha}(0) = (3, 0, 4)$.
 - (a) Compute the basis $\{\bar{t}, \bar{N} \times \bar{t}, \bar{N}\}$ at \bar{p} . Here \bar{t} denotes the unit tangent to C in the direction of $\bar{\alpha}$ and \bar{N} denotes the unit normal vector to the sphere. Draw a picture that indicates the curve and this basis.
 - (b) Compute $\frac{D\bar{\alpha}'(0)}{dt}$. Is $\bar{\alpha}$ geodesic at \bar{p} ?
 - (c) Reparametrize $\bar{\alpha}$ with respect to arc length.
 - (d) Compute κ , κ_g , and κ_n of $\bar{\alpha}$ at \bar{p} directly. Confirm that $\kappa^2 = \kappa_g^2 + \kappa_n^2$.
- 2. Recall that a regular curve C in a surface S is called a *line of curvature* if at each point $\bar{p} \in C$, the tangent to C is a principal direction at \bar{p} . Show that if a curve $C \subset S$ is both a line of curvature and a geodesic, then C is a plane curve.
- 3. Give an example of a line of curvature which is a plane curve and not a geodesic.
- 4. Prove that a curve $C \subset S$ is both an asymptotic curve and a geodesic if and only if C is a straight line.
- 5. Show that there are infinitely many geodesics joining any two points (x, y, z) and (x', y', z') on the unit cylinder.
- 6. Let S be an oriented regular surface and let $\bar{\alpha} : I \to S$ be a curve parametrized by arc length. At the point $\bar{p} = \bar{\alpha}(s)$ consider the three unit vectors $\bar{t} = \bar{\alpha}'(s)$, \bar{N} the unit normal vector to S at $\bar{\alpha}(s)$, and $\bar{N} \times \bar{t}$. Show that

$$\frac{dt}{ds} = 0\bar{t} + a(s)(\bar{N}\times\bar{t}) + b(s)\bar{N}$$
$$\frac{d(\bar{N}\times\bar{t})}{ds} = -a(s)\bar{t} + 0(\bar{N}\times\bar{t}) - c(s)\bar{N}$$
$$\frac{d\bar{N}}{ds} = -b(s)\bar{t} + c(s)(\bar{N}\times\bar{t}) + 0\bar{N}.$$

For some functions a(s), b(s), and c(s). The above formulas are the analogues of the Serret-Frenet formulas for the orthonormal moving frame $\{\bar{t}(s), \bar{N}_{\bar{\alpha}(s)} \times \bar{t}(s), \bar{N}_{\bar{\alpha}(s)}\}$. To establish the geometric meaning of the coefficients, prove that:

- (a) $c(s) = (\frac{d\bar{N}}{ds}) \cdot (\bar{N} \times \bar{t})$; conclude from this that $\bar{\alpha}(I) \subset S$ is a line of curvature if and only if c(s) = 0 for all s. (-c is call the geodesic torsion of $\bar{\alpha}$.)
- (b) b(s) is the normal curvature of $\bar{\alpha}(I) \subset S$ at \bar{p} .
- (c) a(s) is a geodesic curvature of $\bar{\alpha}(I) \subset S$ at \bar{p} .
- 7. (a) Create two triangulations of the sphere, distinct from the one described in the video/notes. Compute the Euler characteristic of the sphere two times, once from each of your triangulations. Do you get the same thing both times?
 - (b) Create a triangulation of the torus. What is the Euler characteristic of the torus?
- 8. (For the last day of class, not to be turned in.)

The general version of the global Gauss-Bonnet theorem states that if $R \subset S$ is a regular region of an oriented surface bounded by a simple, closed, piecewise regular curve, then

$$\sum_{i=1}^{n} \int_{C_i} k_g(s) \, ds + \iint_R K \, dA + \sum_{j=1}^{p} \theta_j = 2\pi \chi(R)$$

where C_i , i = 1, ..., n, are the segments of the boundary of R and θ_j , j = 1, ..., p, are the exterior angles of the boundary of R.

A simply-connected region in a surface S is a region that is homeomorphic to a disk (it has no holes in it and is bounded by a closed, simple, piecewise-differentiable curve). An *n*-gon on a surface S is a piecewise regular curve α with n vertices whose segments are geodesics and which bounds a simply connected region. Let S be a surface with negative Gaussian curvature everywhere. Show that there are no n-gons in S for n = 0, 1, 2. Please explain.