Math 335: Differential Geometry Homework 1 (due September 18)

- 1. If $\bar{\alpha}(t) : \mathbb{R} \to \mathbb{R}^2$ is such that $\bar{\alpha}''(t) = \bar{0}$ for all t, what can be said of $\bar{\alpha}(t)$?
- 2. Find a parametrized curve $\bar{\alpha}(t)$ whose trace is the circle $x^2 + y^2 = 1$ such that $\bar{\alpha}(t)$ runs clockwise around the circle with $\bar{\alpha}(0) = (0, 1)$.
- 3. Show that for vectors $\bar{u}(t)$ and $\bar{v}(t)$ in \mathbb{R}^n , $(\bar{u}(t) \cdot \bar{v}(t))' = \bar{u}'(t) \cdot \bar{v}(t) + \bar{u}(t) \cdot \bar{v}'(t)$.
- 4. Let $\bar{\alpha}(t)$ be a parametrized curve that does not pass through the origin. If $\bar{\alpha}(t_0)$ is the point of the trace of $\bar{\alpha}$ closest to the origin and $\bar{\alpha}'(t_0) \neq 0$, show that the position vector $\bar{\alpha}(t_0)$ is orthogonal to $\bar{\alpha}'(t_0)$.
- 5. Show that the tangent lines to the regular parametrized curve $\bar{\alpha}(t) = (3t, 3t^2, 2t^3)$ make a constant angle with the line y = 0, z = x.
- 6. Let $\bar{\alpha}(t) = (ae^{bt} \cos t, ae^{bt} \sin t), t \in \mathbb{R}, a \text{ and } b \text{ constants}, a > 0, b < 0$, be a parametrized curve.
 - (a) Show that as $t \to +\infty$, $\bar{\alpha}(t)$ approaches the origin, spiraling around it (because of this, the trace of $\bar{\alpha}$ is called the *logarithmic spiral*). Draw a sketch.
 - (b) Show that $\bar{\alpha}'(t) \to (0,0)$ as $t \to +\infty$ and that

$$\lim_{t \to +\infty} \int_{t_0}^t \left| \bar{\alpha}'(t) \right| dt$$

is finite; that is, $\bar{\alpha}$ has finite arc length in $[t_0, \infty)$.

- 7. Let $\bar{\alpha}: I \to \mathbb{R}^3$ be a parametrized curve. Let $[a, b] \subset I$ and set $\bar{\alpha}(a) = \bar{p}, \bar{\alpha}(b) = \bar{q}$.
 - (a) Show that, for any constant vector \bar{v} with |v| = 1,

$$(\bar{q} - \bar{p}) \cdot v = \int_a^b \bar{\alpha}'(t) \cdot \bar{v} \, dt \le \int_a^b |\bar{\alpha}'(t)| \, dt$$

(Hint: the first equality is the harder of the two. You will need the Fundamental Theorem of Calculus.)

(b) Set

$$v = \frac{\bar{q} - \bar{p}}{|\bar{q} - \bar{p}|}$$

and show that

$$|\bar{\alpha}(b) - \bar{\alpha}(a)| \le \int_a^b |\bar{\alpha}'(t)| \, dt;$$

that is, the curve of shortest length from $\bar{\alpha}(a)$ to $\bar{\alpha}(b)$ is the straight line joining these points.